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Background

Late/decision fusion models make predictions from multi-
modal data by combining the predictions of modality-
specific models via combination functions.

Real world decision-making often requires reasoning about
information from multiple heterogeneous sources.
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Probabilistic circuits (PCs) represent the joint distribution
over a set of variables using a structured computational
graph; the structure enables efficient, exact, and
differentiable probabilistic inference.

e.g., Medicine

Need a principled way to infer the credibility of
information from each source.

Multimodal-fusion via PCs

Probabilistic Circuits as Combination Functions
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Extent of change in belief about target
by observing information from X.
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Inference. Given multimodal data point x, Direct-PC (DPC) combination Credibility-weighted mean (CWM)

infer distribution over target Y, accounting Combine by directly inferring Combine via weighted mean; where
for source-specific credibility. conditional P(Y | p) from PC each source’s weight is its credibility.

Unimodal predictions, p = {p; = ¢(x;)}i~,
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Empirical Evaluation

PC-based fusion performs at par with state-of-the art. Increasing noise in a modality leads to reduced credibility (AV-MNIST)
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What we get?

Combination Test Performance o es oes
Function Accuracy  Precision Recall F1 score AUROC Noisy Modality = Image wjlﬁm/o
0.60 0.60
Deep MLP 90.0+14 904+1.3 89.7+14 895+1.4 99.4+0.3
3'- 0.55 0.55
Weighted Mean 91.3+2.2 91.9+1.7 91.3+2.2 914+2.1 994+0.3 —
g 0.50 0.50
Statistical Noisy or 90.9 + 2.7 914 +2.4 90.8 £ 2.6 90.9+2.6 994+0.3 v 0 ae 04
| )
QMF 90.5+2.4 9099+24 90.5+2.4 90.4+2.4 99.53+0.4 0 46 040 .__'\0-“’_“\
TMC 91.5+3.2 92.1+3.0 91.5+3.2 91.5+3.1 994+0.3 . 035
Noise-aware 00 02 04 06 08 10 00 02 04 06 08 10
RCML 89.3+5.0 90.0+4.9 89.3+5.01 89.0+5.2 99.34+0.3 1-A 1-A
CWM 92.5+1.4 94.0+1.5 925+1.4 92.5+1.0 9942 +0.2 Cred|b|||ty_awa re fusion is robust to noise (CU B)
Direct-PC 91.7+1.0 924+1.1 91.7+10 91609 99.2+0.4

Mean test performance on the CUB dataset across 5 trials

CWM assumes a linear relationships between credibility and the
target. So, CWM s better suited to smaller data sets where such
linearity holds; while DPC is better for larger data sets where
linearity cannot be assumed.
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* Extending to infer credibility across knowledge-graphs.

* Extending to include context-specific credibility.

* Extending to intermediate fusion.
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