



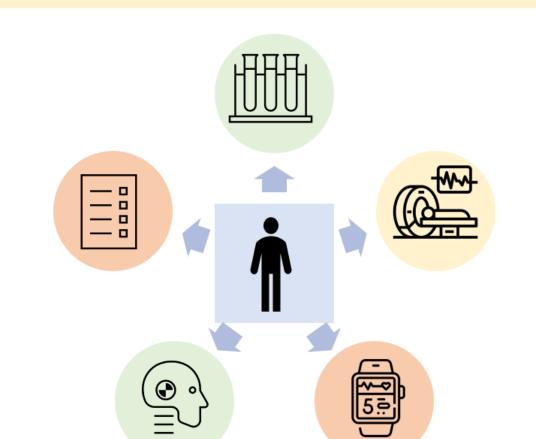
# Credibility-aware Multi-Modal Fusion Using Probabilistic Circuits



Sahil Sidheekh\*, Pranuthi Tenali\*, Saurabh Mathur\*, Erik Blasch, Kristian Kersting, Sriraam Natarajan

### Motivation

Real world decision-making often requires reasoning about information from multiple heterogeneous sources.



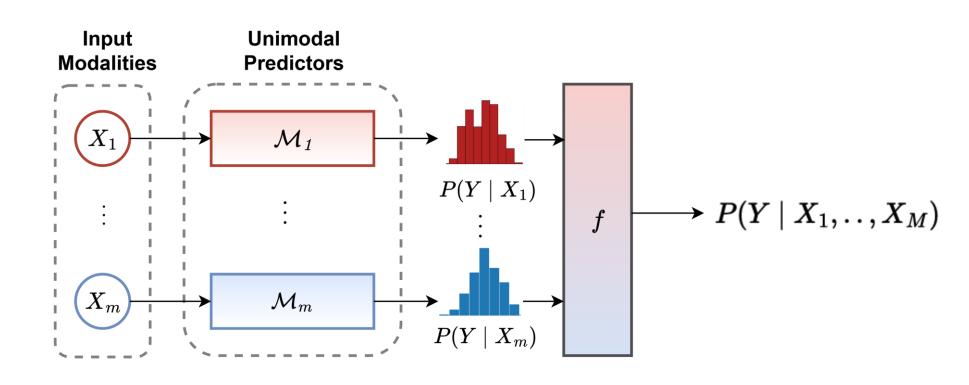
What if sources disagree?

e.g., Medicine

Need a principled way to infer the credibility of information from each source.

### Background

Late/decision fusion models make predictions from multimodal data by combining the predictions of modalityspecific models via combination functions.



**Probabilistic circuits (PCs)** represent the joint distribution over a set of variables using a structured computational graph; the structure enables efficient, exact, and differentiable probabilistic inference.

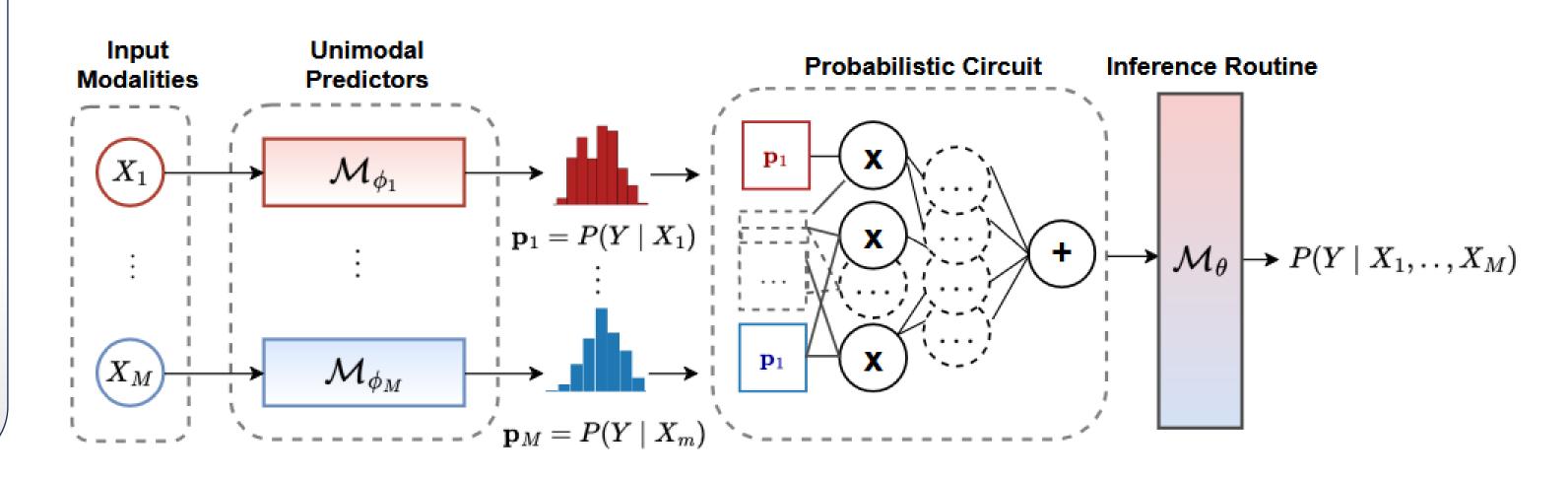
### Multimodal-fusion via PCs

#### Credibility of source $X \in X$

Extent of change in belief about target by observing information from X.

$$C = d_{KL}(P(Y \mid \boldsymbol{X}) \mid\mid P(Y \mid \boldsymbol{X} \setminus \{X\}))$$

### Probabilistic Circuits as Combination Functions



**Inference.** Given multimodal data point x, infer distribution over target Y, accounting for source-specific credibility.

Unimodal predictions,  $\mathbf{p} = \{\mathbf{p_i} = \phi(x_i)\}_{i=1}^{M}$ 

## Direct-PC (DPC) combination

Combine by directly inferring conditional  $P(Y | \mathbf{p})$  from PC

### Credibility-weighted mean (CWM)

Combine via weighted mean; where each source's weight is its credibility.

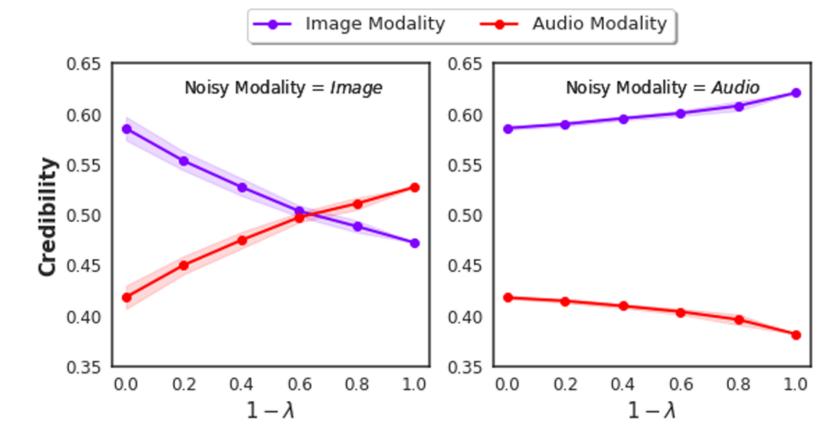
### **Empirical Evaluation**

PC-based fusion performs at par with state-of-the art.

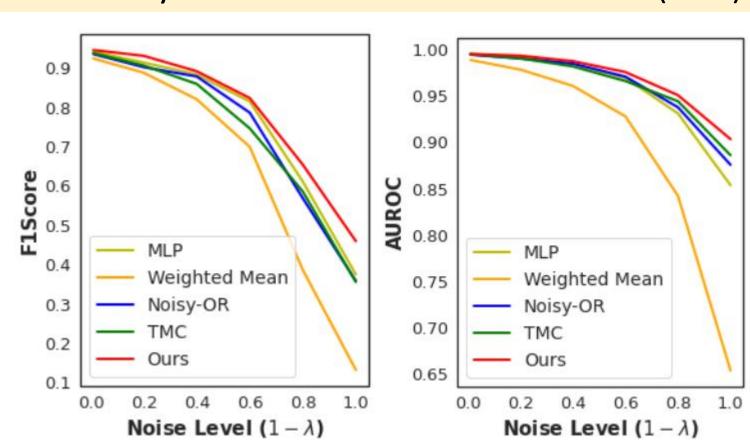
|             | Combination<br>Function | Test Performance |             |             |            |             |
|-------------|-------------------------|------------------|-------------|-------------|------------|-------------|
|             |                         | Accuracy         | Precision   | Recall      | F1 score   | AUROC       |
| Deep        | MLP                     | 90.0 ± 1.4       | 90.4 ± 1.3  | 89.7 ± 1.4  | 89.5 ± 1.4 | 99.4 ± 0.3  |
| Statistical | Weighted Mean           | 91.3 ± 2.2       | 91.9 ± 1.7  | 91.3 ± 2.2  | 91.4 ± 2.1 | 99.4 ± 0.3  |
|             | Noisy or                | 90.9 ± 2.7       | 91.4 ± 2.4  | 90.8 ± 2.6  | 90.9 ± 2.6 | 99.4 ± 0.3  |
|             | QMF                     | 90.5 ± 2.4       | 90.99 ± 2.4 | 90.5 ± 2.4  | 90.4 ± 2.4 | 99.53 ± 0.4 |
| Noise-aware | TMC                     | 91.5 ± 3.2       | 92.1 ± 3.0  | 91.5 ± 3.2  | 91.5 ± 3.1 | 99.4 ± 0.3  |
|             | RCML                    | 89.3 ± 5.0       | 90.0 ± 4.9  | 89.3 ± 5.01 | 89.0 ± 5.2 | 99.34 ± 0.3 |
|             | CWM                     | 92.5 ± 1.4       | 94.0 ± 1.5  | 92.5 ± 1.4  | 92.5 ± 1.0 | 99.42 ± 0.2 |
|             | Direct-PC               | 91.7 ± 1.0       | 92.4 ± 1.1  | 91.7 ± 1.0  | 91.6 ± 0.9 | 99.2 ± 0.4  |

Mean test performance on the CUB dataset across 5 trials

Increasing noise in a modality leads to reduced credibility (AV-MNIST)



Credibility-aware fusion is robust to noise (CUB).



CWM assumes a linear relationships between credibility and the target. So, CWM is better suited to smaller data sets where such linearity holds; while DPC is better for larger data sets where linearity cannot be assumed.

### **Future Work**

- Extending to infer credibility across knowledge-graphs.
- Extending to include context-specific credibility.
- Extending to intermediate fusion.

### Acknowledgements

We acknowledge support from AFOSR award FA9550-23-1-0239, ARO award W911NF2010224 and DARPA Assured Neuro Symbolic Learning and Reasoning (ANSR) award HR001122S0039.



https://starling.utdallas.edu/



@STARLing lab

