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Abstract

We consider the problem of late multi-modal fusion for dis-
criminative learning. Motivated by multi-source domains that
require understanding the reliability of each data source, we
explore the notion of credibility in the context of multi-modal
fusion. We propose a combination function that uses proba-
bilistic circuits (PCs) to combine predictive distributions over
individual modalities. We also define a probabilistic mea-
sure to evaluate the credibility of each modality via inference
queries over the PC. Our experimental evaluation demon-
strates that our fusion method can reliably infer credibility
while maintaining competitive performance with the state of
the art.

Introduction

Real-world decision-making requires reasoning reliably by
utilizing the diverse modalities of data sources that are avail-
able. While such multi-modal data offers a rich representa-
tion and potentially multiple views of the underlying phe-
nomena (for example, images vs blood tests in a clinical set-
ting), it also makes learning and inference more challenging.
Raw data from different sources is often noisy, incomplete,
and inconsistent. This heterogeneity poses a significant ob-
stacle to effective data fusion and analysis.

Multi-modal fusion techniques (Baltrusaitis, Ahuja, and
Morency 2018) have emerged as a promising approach to
combine information from multiple sources to enhance per-
formance on discriminative learning tasks. These techniques
aim to extract and integrate complementary information
from different modalities, leading to more robust and re-
liable results. However, a crucial aspect that often remains
overlooked in multimodal fusion is explicit modeling of the
credibility of the information sources. In many applications,
such as sensor fusion (Khaleghi et al. 2013), medical diag-
nosis (Kline et al. 2022), and financial analysis (Sawhney
et al. 2020), the quality and reliability of the information
sources vary significantly. Distinguishing reliable sources
from non-reliable sources is essential for making accurate
and informed decisions. Multimodal fusion methods often
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assume that all sources are equally credible, which can lead
to suboptimal performance or even erroneous conclusions.

Credibility aware methods in the context of late multi-
modal fusion have previously used weighted average (Ro-
gova and Nimier 2004), discounting factors (Elouedi, Mel-
louli, and Smets 2004a) and Bayesian networks (Wright and
Laskey 2006). This results in models of credibility that are
either too simple (as in the case of weighted averages and
discounting factors) to model complex dependencies or too
complex to perform tractable inference (as in the case of
Bayesian networks). We focus on multi-modal discrimina-
tive learning and propose a late fusion method that uses
Probabilistic Circuits (PCs) (Choi, Vergari, and Van den
Broeck 2020), to effectively combine the predictive distri-
butions over individual modalities. PCs are a class of gener-
ative models that are expressive enough to model complex
distributions while tractable for exact inference. Using the
tractability of PCs, we define a probabilistic measure for as-
sessing the credibility. We also experimentally validate the
efficacy of PCs in modeling complex interactions between
modalities and reliably estimating their credibility.

We will begin with a concise overview of essential back-
ground and relevant works. Following this, we formulate the
problem at hand and our PC based fusion method, along with
the architectural details and methodology for assessing cred-
ibility. We then experimentally evaluate the effectiveness of
our method and finally conclude by summarizing our find-
ings, contributions and future work.

Background

Multi-modal fusion Multi-modal fusion (Baltrusaitis,
Ahuja, and Morency 2018) is the integration of information
from diverse sources or modalities. This field harnesses the
potential of combining data of various types, like text, im-
ages, and audio, to improve decision-making, pattern recog-
nition, and predictive modeling. There are two broad ap-
proaches to multi-modal fusion in the discriminative learn-
ing setting, namely, early fusion and late fusion.

Early fusion approaches fuse information from multiple
sources by combining the features before making predic-
tions. A simple way to achieve this would be to combine
raw modality features via concatenation or pooling via op-
erations such as average, min, max, etc. (Baltrusaitis, Ahuja,



and Morency 2018). In more complex deep learning mod-
els, early fusion is typically achieved by learning joint fea-
ture spaces (Gadzicki, Khamsehashari, and Zetzsche 2020).
Apart from the curse of dimensionality, feature aggregation
results in the loss of information about source-specific distri-
butions (Schulte and Routley 2014). This makes it difficult
to infer the credibility of input sources.

On the other hand, late fusion approaches combine the
information from multiple sources by making predictions
on each source and then combining the predictions. Com-
bining rules (Natarajan et al. 2005; Manhaeve et al. 2018)
like weighted mean (Shutova, Kiela, and Maillard 2016) and
Noisy-OR (Tian et al. 2020) are commonly used for late fu-
sion. While these combining rules allow explicit modeling
of the credibility of each source, they assume independence
of the influence of each source on the target. Late fusion in
deep learning models is implemented via additional feedfor-
ward layers (Glodek et al. 2011; Ramirez, BaltruSaitis, and
Morency 2011). This allows them to model complex corre-
lations and influences of the sources on the target. However,
this also makes it difficult to model the credibility of each
source since neural network layers are opaque.

Credibility Combining information from multiple, het-
erogeneous sources requires information fusion systems to
account for the credibility of each modality’s contribu-
tion (De Villiers et al. 2018). Credibility, as distinct from
reliability, deals with the information’s truthfulness, while
reliability relates to the source’s consistency (Blasch et al.
2013). While human experts might estimate their informa-
tion’s credibility (self-confidence), automated sources re-
quire external evaluation (Blasch et al. 2014). We approach
the problem of accounting for source reliability in multi-
modal fusion from the perspective of the credibility of the
information provided by the source. Prior works have used
source-reliability coefficients learned using domain and con-
textual information (Nimier 1998; Fabre, Appriou, and
Briottet 2001). In the absence of such information, an al-
ternate approach involves learning these coefficients from
training data. This is achieved by minimizing the distance
between a vector of beliefs resulting from fusion and a tar-
get vector from the training set (Rogova and Kasturi 2001;
Elouedi, Mellouli, and Smets 2004b). Another method for
establishing reliability, by using training data, is based on
separatability, wherein the average statistical separability of
information classes in each source is considered (Benedikts-
son, Swain, and Ersoy 1990). This category of methods i.e.
learning coefficients from training data, proves useful in es-
tablishing the relative reliability of classifiers.

Probabilistic circuits (PCs) (Choi, Vergari, and Van den
Broeck 2020) are a class of generative models that repre-
sent the joint distribution over a set of random variables (say
X)) using computational graphs that comprise sum and prod-
uct nodes as internal nodes, and simple tractable distribu-
tions at the leaves. Formally, a PC M is defined as the tuple
(G = (V, E),0) where the Directed Acyclic Graph G rep-
resents the computational graph structure and 6 is the set of
learnable parameters. The distribution induced by the PC M

having root node n is given as

Zcéch(n) we P (X = x) n € Sum
Po(X=x) = [ecenin) Pe(Xsee) = Xse(e)) 1 € Product
wn (X = x) n € Leaf

where ch(n) gives the children of node n, se(n) gives the
scope of node n and 1, is the probability density (or mass)
function associated with the leaf node n.

The key advantage of PCs is that they admit tractable
and often linear time inference for a variety of probabilis-
tic queries under mild assumptions about the structure of G.
In this work, we consider a subclass of PCs that are smooth
and decomposable (typically called sum-product networks
(Poon and Domingos 2011)). A PC satisfies smoothness if
the scope of each sum node is identical to the scope of each
of its children. It satisfies decomposability if, for each prod-
uct node, all the children have disjoint scopes. Smoothness
and decomposability allow us to tractably infer marginal and
conditional distributions from the learned joint.

The structure of PCs can be learned recursively via greedy
heuristics (Gens and Pedro 2013; Rooshenas and Lowd
2014; Dang, Vergari, and Van den Broeck 2020), or by
latent-space decomposition (Adel, Balduzzi, and Ghodsi
2015). However, structure learning can be costly for large-
scale data, and recent approaches rely on random and ten-
sorized structures that resemble deep neural models (Mauro
et al. 2017; Peharz et al. 2020a,b; Sidheekh, Kersting, and
Natarajan 2023) to achieve state-of-the-art performance.

Methodology

We focus on the multi-modal discriminative learning setting,
where multiple experts are trained for each modality, and
their predictive distributions are combined using a function
f to obtain the final output.

Given: A dataset D = {(x},x%...x% , y*)}N, compris-
ing N data points, each with information from m different
modalities, i.e. each x? € R% where d; denotes the feature
dimension corresponding to modality j.

To do: Learn a discriminative model M parameterized
by {0, ¢ = {¢;}1* } that approximates the multimodal pre-
dictive distribution as

P(Y|X1,. ., X)) &= Mo o(Xi,y .o, Xo)
= Mp(My, (X1), ..., My, (X))

where My denotes the fusion function, and M, (or M)
denotes the unimodal predictor corresponding to modality <.
Figure 1 presents the general late-fusion architecture.
Here, My, ..., M,, are probabilistic unimodal discrimina-
tive models corresponding to each of the m modalitities.
Each model M ; induces a distribution over the target Y con-
ditioned on modality j and can be implemented by any dif-
ferentiable probabilistic classifier such as a Multilayer per-
ceptron (MLP). Let this distribution be p; = P(Y | X; =
x;). Late-fusion methods combine information from multi-
ple modalities by defining a combining function over these
probability distributions as the function Mg (p1, ..., Pm)-
We propose a probabilistic method for combining the uni-
modal predictions by employing probabilistic circuits. The
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Figure 1: Late multi-modal fusion architecture for discrimi-
native learning

resulting model can explicitly model complex correlations
between the influence of each source on the target while still
being able to reason about the credibility of each source, as
we elaborate below.

Combining Unimodal Predictions with PCs

We define the combining rule f using a PC M, that mod-
els the joint over the unimodal probability distributions and
the target Y, i.e., Py, (Y, P1,- .., Pm). We use categorical
distributions at the leaf to model the target Y and Dirich-
let distributions to model the unimodal predictive distribu-
tions p1, . .., Pm at the leaves. Since PCs are differentiable
computational graphs, learning can be done in an end-to-
end manner via backpropagation. The resulting late fusion
method allows for two kinds of inference - predictive infer-
ence and credibility assessment.

Predictive Inference. Given a multi-modal example,
(X1, - .- ,Xm), we can perform predictive inference over tar-
get Y in two steps

1. Compute p; = P(Y | X; = x;) = My, for each
modality j = 1,...,m using the unimodal predictors.

2. Infer the multimodal predictive distribution over Y given
the unimodal distributions p1,..., P, by performing
conditional inference over the PC (My) as

PM vala"'ap’m
0 yees Pm

Credibility Assessment. In line with prior work on active
feature elicitation (Natarajan et al. 2018; Das et al. 2023), we
define credibility as the relative amount of information con-
tributed by a modality to the multi-modal predictive distribu-
tion over the target Y. More specifically, we define the cred-
ibility of a modality in terms of the divergence between the
conditional probability distribution excluding that modality
and the conditional distribution including all modalities, i.e.

Cj =o(P(Y [ X\ Xy) || P(Y' | X)) €]

where § is a divergence measure, such as the KL-
Divergence, and X = U;X;. To facilitate comparison across
modalities, we define the relative credibility score y as
G
by ==~
Z j Cj

Note that 0 < p; < 1V and Zj p; = 1, and is therefore a
normalized and probabilistic measure for assessing the cred-
ibility of modality j.

It must be mentioned that unlike neural methods, the
tractability offered by a PC for conditional and marginal in-
ference allows us to define probabilistic measures for the
credibility of each modality. The resulting approach is also
more robust as a PC can naturally handle missing modalities
in the input by tractably marginalizing out the corresponding
unimodal probability distribution in step 2.

Empirical Evaluation

To experimentally validate the utility of the proposed ap-
proach, we consider the AV-MNIST dataset, which is a
benchmark dataset designed for multimodal fusion. It com-
prises two data modalities: images of dimension 28 x 28
depicting digits from O to 9, and their corresponding audio
represented as spectograms of dimension 112x112. We con-
sider the discriminative learning task of identifying the digit
based on the multi-modal input. Following (Vielzeuf et al.
2018), we used deep neural models with the LeNet archi-
tecture to encode the input data and make predictions for
each modality. Specifically, we processed the image input
through a 4-layer convolutional neural network with filter
sizes [5, 3, 3, 3]. Similarly, the audio input was encoded us-
ing a 6-layer convolutional neural network with filter sizes
[5,3,3,3,3,3]. The encoding obtained for each modality
was processed through feedforward neural networks com-
prising of 1 hidden layer with 64 neurons to obtain the uni-
modal predictions. To facilitate seamless integration with the
neural models, we use the deep parameterization proposed
by (Peharz et al. 2020a) to implement our PC-based combi-
nation function. We also implemented 3 basline combination
functions as elaborated below for comparison:

1. Weighted Mean combination function that
defines the multimodal predictive distribution as:
P(Y|X1,X2,...,Xm) = Z:r;l U}ZP(Y|X7) where
w,; are learnable weights such that 0 < w; < 1 and
> w; = 1. The constraints on the weights ensure that
the combination function outputs valid distribution.

2. Noisy-Or combination function that defines the
multimodal predictive distribution as:
P(Y|X1,Xo,..., X)) =1-T[",(1 - P(Y|X;)).

3. Multi Layer Perceptron (MLP) combination func-
tion that maps the vector of unimodal predictions
[P(Y|X;)]™, to the multimodal predictive distribution
P(Y|X1, Xs,..., X,,) using a feedforward neural network
having 1 hidden layer with 64 neurons.

For each fusion method, we use the same backbone ar-
chitecture to obtain the unimodal predictions. We train all
models end to end via gradient descent and backpropagation
to minimize the cross-entropy loss between the targets and
predictions, using an Adam optimizer with a learning rate of
0.001 and batch size of 128.

Overall, we aim to answer the following research ques-
tions empirically:



Test Performance

Fusion Model
Accuracy Precision Recall F1Score AUROC
MLP 72.57+0.46 72.61+043 72424+0.64 72.23+0.96 96.26+0.05
Weighted Mean 66.28 =2.05 66.45+1.95 66.10+2.20 65.80£2.56 95.27+0.04
Noisy-OR 68.88 +0.32 68.87+0.31 68.70+0.35 68.41+0.83 94.48+0.11
Probabilistic Circuit (ours) 72.45+0.41 72.544+0.51 72.30+£0.42 72.13+0.63 96.394 0.07

Table 1: Mean test performance of late fusion methods on the AV-MNIST dataset, & standard deviation across 3 trials.

—_— A=0.0 A=04 A=028
—_— A=0.2 A=06 —_— A=10

Image Modality Audio Modality

042

e
=]
]

N —

5 10 15 20 5 10 15 20
Epoch Epoch

Credibility
o o
g 2

e
%]
[r=]

o
%]
=]

Figure 2: Mean Validation Relative Credibility obtained
using a PC for the two modalities of the AV-MNIST dataset
across training epochs. Varying degrees of noise (controlled
by A) are introduced into the audio modality. The shaded
region represents the standard deviation across 3 trials.

(Q1) Can a PC-based combining rule efficiently capture in-
tricate dependencies between modalities to achieve
performance at par with existing methods?

(Q2) Can the tractability of PCs be used to reliably infer
credibility scores for each source modality?

Performance Benchmarking

Table 1 summarizes the test-set performance of the base-
line models and our PC model on the AV-MNIST dataset in
terms of the classification metrics - Accuracy, Precision, Re-
call, F1-Score and AUC-ROC, after training for 50 epochs.
We observe that our PC based combination function not only
outperforms simple probabilistic baselines such - Weighted
Mean and Noisy-Or on all performance metrics, but also
achieves performance similar to that of an MLP based fusion
method. Thus, the PC based late fusion method is expressive
enough to capture intricate dependencies between unimodal
predictive distributions.

Credibility Evaluation

We aim to evaluate whether our PC based late fusion method
can reliably compute credibility of each modality. To this
end, we design the following experiment. We consider the
AV-MNIST dataset and a PC-based fusion model trained
over it for 30 epochs. We now introduce varying degrees of
noise into one of the modalities (say ¢), keeping others fixed,

and train the PC to maximize the joint predictive likelihood.
More specifically, we define

P(Y|X;) = AP(Y|X;) + (1 = )N

where N ~ Dir(«) is a noisy probability vector sam-
pled from a Dirichlet distribution with parameters «, and
0 < X < 1. P(Y]X;) is thus a convex combination of two
probability distribution and is therefore a valid distribution.
A controls the amount of information retained in P from the
unimodal predictive distribution.

Note that as A — 0, P(Y|X;) — N, and thus has less
predictive information about modality 7. Thus, the credibil-
ity score should ideally decrease for modality ¢ and increase
for the other modalities. Figure 2 shows how the mean rela-
tive credibility modeled by PC over the validation set varies
as it is trained over the noisy unimodal distributions with
noise introduced into the audio modality, for varying val-
ues of A\. As expected, we can see that the credibility of the
audio modality decreases as training progresses, while that
of the image modality increases. Further, we can also ob-
serve that the decrease in credibility increases as A — 0.
To demonstrate this correlation more evidently, we plot the
Mean Relative Credibility outputted by the trained PC for
each modality on the test set, for the two settings where noise
is introduced into one of image/audio modalities in Figure 3.
We can clearly see that in both settings, the credibility score
of the noisy modality decreases as A — 0, while that of
the non-noisy modality increases. Thus, the credibility score
outputted by the PC is a reliable measure that is reflective
of the information contributed by each modality to the final
predictive distribution.

By averaging the credibility of each modality over all dat-
apoints, we have so far looked at a global measure, and the
image modality seem to have higher global credibility than
audio for AV-MNIST (see A = 1). However, the credibility
of each modality may differ locally for individual datapoints,
which can also be evaluated efficiently using the PC.

Conclusion

We considered the problem of late multi-modal fusion in the
discriminative learning setting. We developed a probabilis-
tic circuit-based combination function for late-fusion that
is expressive enough to model complex interactions, robust
to missing modalities, and capable of making reliable and
credibility-aware predictions. Our experiments demonstrate
that the proposed approach is competitive with the state-of-
the-art while allowing for a principled way to infer the credi-
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Figure 3: Mean Test Relative Credibility outputted by a PC
for the two modalities of the AV-MNIST dataset across vary-
ing degrees of noise (controlled by \) introduced into each
modality. The shaded region represents the standard devia-
tion across 3 independent trials.

bility of each modality. Future work includes scaling experi-
mental evaluation to domains with more sources and extend-
ing the framework to allow subgroup-specific credibilities.
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