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Abstract
Learning and reasoning about a graph’s entities and relations re-

quires informative representations. Typical graph embedding meth-

ods fail to fully capture the symmetries contained in the graph,

making them sample inefficient. Moreover, the embeddings learned

by these methods are opaque, limiting their applicability in high-

stakes domains like identifying drug interactions. We consider the

problem of learning rich yet interpretable graph representations

from smaller graphs by exploiting their rich multi-relational struc-

ture. Specifically, we propose a solution based on statistical rela-

tional rule learning. We construct edge representations by learning

relational logic rules to predict edges, applying the rules to the

edges, and counting the number of ways each rule can be satisfied.

We use these edge-based graph representations to construct graph

convolutional networks (GCNs) by replacing the input graph’s ad-

jacency matrix with an edge distance matrix. Our comprehensive

empirical evaluation demonstrates the superiority of our method

over multiple approaches, including graph embedding techniques,

variations of GCNs, and rule learning techniques.
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1 Introduction
Graphs are ubiquitous data structures for representing relation-

ships and interactions in a variety of domains, including social

networks [29], chemical interactions [11], biological systems [43],

knowledge bases [3], and recommendation systems [28]. They con-

sist of nodes and edges; this structure provides a natural way to

model complex, structured data and capture intricate dependencies

often lost in traditional tabular representations. However, the raw

structure of a graph is insufficient for learning tasks such as node

classification and edge/link prediction since the graph structure

lacks explicit feature representations encoding the semantic and

structural properties of nodes and edges. This has spurred signifi-

cant interest in representation learning on graphs, which aims to

derive meaningful, low-dimensional embeddings that preserve the

graph’s topological and relational information.

One such approach to graph representation learning is graph

convolution networks (GCNs, [21]). They extend convolutional

neural networks (CNNs, [9]) from images to graphs. Despite their

promise, GCNs face several challenges, particularly in high-stakes

domains, where the diversity of relationship types and the complex-

ity of underlying patterns complicate the construction of effective

node representations. As a result, practitioners often resort to graph

embedding learning methods [6] to construct the input features for

GCNs. These methods learn embedding vectors for each node in the

graph by extending word embedding methods from text to graphs.

These methods suffer from three key limitations: (1) learning re-

quires large amounts of data, (2) the learned node embeddings are

opaque, and (3) they struggle to generalize to new entities.

We address these limitations of graph embeddingmethods through

Statistical Relational Learning (SRL, [24]). SRL methods learn proba-

bilistic logic rules, combining first-order logic’s ability to faithfully

capture rich domain structure with probabilistic models’ ability

to deal with uncertainty. While these models are interpretable,

their scalability is limited by the difficulty of inference. We aim

to combine the scalability of deep representation learning with

the rich yet interpretable representations of SRL. To this effect, we

propose relatIonal deNsity disTance basEd GRAph convoluTional
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Figure 1: Example: An incomplete graph representing co-authorship (CA) between researchers (left). The graph might be
completed by learning a graph convolutional network (GCN) to predict missing relations; this requires a feature matrix and an
adjacency matrix representing edges between nodes. Existing GCN approaches (top-right) use opaque node embeddings to
construct the feature matrix. INTEGRATE (bottom-right) constructs interpretable edge features; each feature corresponding to
a first-order logic rule. We also replace the node-adjacency matrix with an edge distance matrix, constructed using our edge
features.

nEtworks (INTEGRATE)1, a sample-efficient method for learning in-

terpretable yet rich features from graphs. INTEGRATE defines input

features for a GCNmodel by counting the number of satisfactions of

these rules for each candidate edge or node class. Figure 1 explains

the problem addressed by INTEGRATE through the example of a co-

authorship network. We make the following key contributions: (1)
We introduce INTEGRATE, the first graph feature representation

capable of exploiting symmetries in complex, multi-relational data

using first-order logic rules. (2) Going beyond the use of carefully

designed hand-crafted rules, our method learns rules automatically

to construct GCNs. This method for constructing graph features

is also more sample-efficient than node embedding learning meth-

ods, allowing GCNs to be learned from smaller data sets. (3) Unlike
most graph representation learning methods, INTEGRATE is not

limited to simple (binary) edges. It naturally handles hyperedges

by representing the graph in terms of first-order logical rules.

2 Background
Graphs. Many real-world domains are naturally represented as

graphs [50] such as social networks [29], chemical interactions [11],

biological systems [43], knowledge bases [3], and recommendation

systems [28]. Each graph consists of a set of vertices or nodes and a

set of edges between them. A graph𝐺 is formally defined as ⟨𝑉 , 𝐸⟩
where 𝑉 and 𝐸 are the vertex and edge sets, respectively. Each

edge in the graph connects two nodes and might be represented

as a tuple (𝑢, 𝑣) ∈ 𝐸 where 𝑢, 𝑣 ∈ 𝑉 2 . Many real-world domains

require two extensions to this basic graph data structure: node

and edge types, and edges connecting more than two nodes. Het-

erogeneous graphs extend basic graphs to include node and edge

1
The code can be found at: https://github.com/ddhami/RD2GCN/.

types. Such graphs can be represented as ⟨𝑉 , 𝐸, 𝑓𝑉 , 𝑓𝐸⟩ where 𝑓𝑉
and 𝑓𝐸 are functions mapping each node 𝑣 ∈ 𝑉 and each edge 𝑒 ∈ 𝐸
to their corresponding types 𝑡𝑣 ∈ 𝑇𝑉 and 𝑡𝑒 ∈ 𝑇𝐸 , respectively.

Hypergraphs extend graphs to allow edges connecting more than

two nodes; each hyperedge is represented as (𝑢1, . . . , 𝑢𝑛) where
𝑢1, . . . , 𝑢𝑛 ∈ 𝑉𝑛 . This structure is, clearly, not directly reducible to

tabular form, making learning from such data and reasoning about

the information contained in them challenging [15]. This has moti-

vated a long line of AI research from rule-based approaches [42] to

deep representation learning [21].

Graph Convolutional Networks (GCNs). Graph Convolutional

Networks (GCNs, [21]) are a class of deep representation learn-

ing models that extend convolutional neural networks (CNNs) to

handle graph-structured data. GCNs exploit local structure to learn

representations for each node in the input graph by aggregating in-

formation from its neighbors. Concretely, a GCN’s input represents

the graph’s information in two forms: node feature descriptions

(𝜙 (𝑣)) and node neighborhood structure (captured through the ad-

jacency matrix 𝐴 of the graph). As a result, learning a useful GCN

from a graph requires informative node feature representations.

Constructing GCNs using graph embedding methods. One way to

learn node features is through graph embedding methods [6, 49].

Among these, translational distance models minimize the distance

between nodes and edges under specific constraints or regularizing

factors; examples include TransE [4] and KG2E [14]. Extending

these approaches, newer methods embed graphs into more com-

plex spaces, such as hyperbolic space [2, 25] and hypercomplex

https://github.com/ddhami/RD2GCN/
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Figure 2: Flowchart explaining graph feature construction using INTEGRATE. For the coauthorship link prediction task, we
construct input features for a GCN in two steps. (1) We first learn a set of𝑚 first-order logic rules to predict the presence of
coauthorship between two authors. We use these rules to define a feature vector for each candidate edge. For each edge, for
each rule, we count the number of ways that we can infer the presence of the edge by unifying the rule with facts based on the
observed edges. (2) We use these edge feature vectors to construct a matrix representing the Euclidean distance between pairs
of edges.

space [44, 55]. Another important class of methods focuses on com-

positional operators for the graph’s nodes and edges; examples

include RESCAL [33], DistMult [52], and TuckER [1].

While these embedding methods are highly scalable, they face

several issues in smaller but complex domains. First, they cannot

represent hypergraphs. In practice, hyperedges are converted to a

set of simple edges and additional nodes. However, learning em-

beddings for these new nodes becomes difficult since they are asso-

ciated with very few edges. Second, these methods fail to capture

complex patterns such as multi-hop interactions and aggregations.

For instance, in the coauthorship network presented in Figure 1,

embeddings cannot capture the pattern that two authors are more

likely to be coauthors if they share a larger number of research

areas. Embedding methods also struggle with generalization to new

entities, such as new authors and research areas (cold-start prob-

lem). Finally, the embeddings learned by these methods are opaque,

limiting their real-world applicability in high-stakes situations [39].

Inducing meaningful patterns using Statistical Relational Learn-
ing. One way to learn interpretable predictive models from graph-

structured data is Statistical Relational Learning (SRL, [24, 37]).

These methods compactly represent distributions over structured

spaces by extending probabilistic graphical models (PGMs [23])

with first-order logic. They represent data in terms of logical predi-

cates, allowing them to naturally represent heterogeneous graphs

and hypergraphs by mapping each node class to unary predicates,

each node’s class label (say, node 𝑣 belonging to class ℎ) to a logical

atom based on the corresponding unary predicate (ℎ(𝑣)), each hy-

peredge type (say 𝑡 ) to an n-ary predicate, and each typed hyperedge

(𝑢1, . . . , 𝑢𝑛 of type 𝑡 ) to a logical atom based of the corresponding

n-ary predicate (𝑡 (𝑢1, . . . , 𝑢𝑛)). In this representation, node classifi-

cation and link prediction problems are equivalent to predicting the

conditional probability of a new predicate given all the predicates

entailed by the graph.

These rules might be learned in a discriminative learning setup,

consisting of a set of positive and negative examples. However,

graphs typically do not contain negative instances of any edge type.

One way to address this issue is to generate negative instances

by randomly sampling from missing edges. This is equivalent to

making the closed-world assumption, that is, that all unknown state-

ments are false. However, this can result in sparse and imbalanced

data sets, making the learning problem challenging. Another way

is to reformulate the learning problem as a relational one-class

classification problem [20]. These methods learn rules from only

positive examples to estimate the density of new instances of the

target predicate in terms of their distance to known instances.

For example, in the network presented in Figure 1, a first-order

logic rule to predict coauthorship could capture the pattern that

coauthorship is likely between authors who share a research area:

coauthor(A, B)← area(A, C) ∧ area(B, C). However, it can-
not capture patterns about aggregates, such as the number of re-

search areas common to two authors. [17] address this issue by

learning a predictive model using the number of satisfactions of the

body of the rules. So, for a candidate edge couathor("Sam Smith",
"Jane Doe"), we can capture information about the number of

shared research areas by counting the number of satisfactions of

the rule.
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Related work. Constructing feature representations from graphs

is a prerequisite for effective graph analytics. As a result, researchers

have developed variations of the standard GCN to better represent

complex graphs. Relational GCNs [40] use relation-specific trans-

formations to ensure the node representations capture different

kinds of relationships between entities. CompGCNs [47] jointly

embeds both nodes and relations in a graph. Graph Attention Net-

works (GAT, [48]) do not use convolutions but masked attention;

this allows each node to dynamically weigh the importance of its

neighbors’ features when aggregating information.

3 INTEGRATE
Graph features are necessary for deep representation learning meth-

ods such as GCNs. Unfortunately, existing graph embedding meth-

ods not only yield opaque representations but also fail to capture

the symmetries in multi-relational data. This limits the applicabil-

ity of GCNs to real-world, high-stakes, small but complex graphs.

Concretely, we aim to solve the following:

Given:An incomplete heterogeneous hypergraph𝐺, consisting of nodes𝑉

and hyperedges𝐸,where each node belongs to a type in𝑇𝑉 , each hyperedge

belongs to a type in𝑇𝐸 , and functions 𝑓𝑉 and 𝑓𝐸 map nodes and hyperedges

to their respective types.

ToDo: Construct interpretable yet effective input features for a GCNmodel

to accurately complete𝐺 by classifying unlabeled edges based on whether

they belong to a target type 𝑡 ∈ 𝑇𝐸 or classify unlabeled nodes based on

whether they belong to a target class 𝑡 ∈ 𝑇𝑉 .

We address this problem via Statistical Relational Learning. To

this effect, we represent 𝐺 as a knowledge base in first-order logic,

consisting of a set of logical constants, one for each node in 𝑉 ; a

set of logical predicates 𝑇 , one for each node class in 𝑇𝑉 and each

hyperedge type in 𝑇𝐸 ; and a set of logical atoms A, obtained by

applying the constants to the predicates, each atom representing ei-

ther an observed typed hyperedge 𝑒 ∈ 𝐸 or the assignment of a class

to a node. In this representation, node classification is equivalent

to predicting the unary predicate 𝑡 ∈ 𝑇𝑉 , representing the target

node class, instantiated for each node 𝑣 as 𝑡 (𝑣); link prediction is

equivalent to predicting the n-ary predicate 𝑡 ∈ 𝑇𝐸 , representing
the target hyperedge type, instantiated for each candidate hyper-

edge (𝑢1, . . . , 𝑢𝑛) as 𝑡 (𝑢1, . . . , 𝑢𝑛) . Using this representation of 𝐺 ,

we first learn a set of first-order logic rules (say 𝑅) to predict predi-

cate 𝑡 and then use the rules to define an input representation for

the GCN model. We hypothesize that (and as our empirical results

demonstrate), these features effectively capture rich, higher-order
information about each node’s attributes and its relationships, al-

lowing the resulting GCN model to accurately complete the graph

𝐺 by predicting missing predicates (i.e., typed nodes and edges).

The overall approach is presented in Fig. 2.

Constructing rich yet meaningful graph features. The first step
in our method is learning a set of rules, 𝑅, to predict instances

of predicate 𝑡 . We learn 𝑘 rules predicting the presence of the

target predicate, 𝑅+, and 𝑘 rules predicting its absence, 𝑅− . To
learn the rules to predict the presence of target predicate, 𝑅+ =

{𝑟1, . . . , 𝑟𝑘 }, we learn a relational one-class classifier [20] on the

observed predicates. We learn rules for predicting the absence of

the target, 𝑅− , by generating examples randomly sampled from

missing predicates. The full set of rules is defined as 𝑅 = 𝑅+ ∪ 𝑅− .
We use these rules to define features for each instance of the tar-

get predicate. For each instance 𝑡 (𝑢1, . . . , 𝑢𝑛), we define the feature
vector 𝜙 (𝑡 (𝑢1, . . . , 𝑢𝑛)) of length 2𝑘 where the 𝑖𝑡ℎ element corre-

sponds to the number of ways that the rule 𝑟𝑖 can be true, when its

head is unified with 𝑡 (𝑢1, . . . , 𝑢𝑛) . Concretely, 𝜙 (𝑡 (𝑢1, . . . , 𝑢𝑛))𝑖 =
Count(𝑡 (𝑢1, . . . , 𝑢𝑛), 𝑟𝑖 ) ∀𝑖 = 1, . . . , 2𝑘. Here, Count is a function

that unifies 𝑟𝑖 ’s head with 𝑡 (𝑢1, . . . , 𝑢𝑛), retrieves all the atoms or

their conjunctions that can be unified with the partially grounded

rule to make it fully grounded, and returns the total number of such

groundings.

Example. For the coauthorship network, consider two rules

𝑟1 and 𝑟2, one for identifying positive examples and the other for

negative examples.

𝑟1 : coauthor(A, B) ← area(A, C), area(B, C).

𝑟2 : coauthor(A, B) ← affil(A, C), affil(B, D), conflict(C,D).

Then, for the query coauthor("Sam Smith", "Jane Doe"), the
feature vector [1, 0] constructed using (𝑟1, 𝑟2) represents the fact
that the two authors share one research area and have no affiliations

that conflict with each other.

Constructing an edge distance matrix. The original GCN formula-

tion [21] requires a node-adjacency matrix 𝐴 to perform the layer-

wise propagation. Instead of building the adjacency matrix from the

graph’s relations, we compute an edge-distance matrix [5, 38] D
using our edge feature representations. This matrix approximates

the adjacency matrix and, as our experiments show, captures richer

structural information from the graph. In order to obtain D, a pair-

wise Euclidean distance of all the node feature descriptors i.e. the

counts in the feature set is computed. Algorithm 1 demonstrates

the overall approach.

4 Experimental Evaluation

Name #Entities #Preds #Pos #Neg #Facts #Rules
ICML 6,653 4 155 6,498 1,395 7

ICLR 10,990 4 990 10,000 4,730 7

DDI 18,060 14 2,832 3,188 1,774 25

Carcino 440 8 182 258 54,890 9

PPMI 1,190 38 378 812 314,144 18

CiteSeer 15,008 17 7,504 7,504 119,635 7

WebKB 746 5 153 593 1,354 7

Table 1: Summary statistics of the 7 data sets used for our
empirical evaluation; the first 3 for the link prediction and
the remaining 4 for the node classification. For each data
set, we present the number of entities, predicates, positive
and negative examples, background facts, and rules learned
by our method. The last column lists the number of rules
learned for each dataset. Of these data sets, only WebKB
has binary predicates while the rest of the data sets have
predicates of varying arity (i.e., hyperedges).

Through our extensive experimental evaluation, we aim to an-

swer the following research questions: (Q1) Can INTEGRATE ef-

fectively exploit the multi-relational structure of the graph to learn
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Figure 3: INTEGRATE learns class-specific relational density estimators. For e.g., we use the co-authorship network on the left
to learn separate rule sets for positive and negative examples. This method results in edge features that are more discriminative.

+ Interacts(𝑑1, 𝑑2) =⇒ TransporterSubstrate(𝑑1,

𝑡𝑟1) ∧ TransporterSubstrate(𝑑2, 𝑡𝑟1) ∧
EnzymeInhibitor(𝑑1, 𝑒1) ∧ EnzymeInhibitor(𝑑2, 𝑒1)

+ Interacts(𝑑1, 𝑑2) =⇒ EnzymeInducer(𝑑1, 𝑒1) ∧
EnzymeSubstrate(𝑑2, 𝑒1) ∧ EnzymeInducer(𝑑2, 𝑒2)

∧ EnzymeInducer(𝑑1, 𝑒2)

- Interacts(𝑑1, 𝑑2) =⇒ TargetInhibitor(𝑑1, 𝑡1) ∧
TargetInhibitor(𝑑2, 𝑡2) ∧ TransporterSubstrate(𝑑1,

𝑡𝑟1)

- Interacts(𝑑1, 𝑑2) =⇒ TargetAgonist(𝑑1, 𝑡1) ∧
TargetAgonist(𝑑2, 𝑡2) ∧ Transpor

terInducer(𝑑1, 𝑡𝑟1) ∧ TransporterInducer(𝑑2, 𝑡𝑟2)

Figure 4: Sample rules learned from the drug-drug inter-
actions data set. Positive rules are labeled with a ‘+’ while
negative rules are labeled with a ‘-’.

rich representations from small data sets? (Q2) Does relational den-
sity estimation yield better rules in imbalanced data sets? (Q3) Is
constructing a distance-based graph structure useful? (Q4) How
does the choice of distance measures affect the performance of

INTEGRATE?

Data sets. To answer these research questions, we considerseven
data sets from the statistical relational learning community for two

kinds of tasks – link prediction and node classification. For link

prediction, we consider three knowledge graph data sets – ICML,

ICLR, and DDI. The ICML, ICLR data sets consist of information

about papers and their authors from the eponymous conferences;

+ Carcino(𝑑) =⇒ drugAtom(𝑑 ,𝑎1) ∧ sbond7(𝑑 ,𝑎1,𝑎2)

∧ sbond1(𝑑 ,𝑎2,𝑎3) ∧ sbond2(𝑑 ,𝑎3,𝑎4) ∧
sbond1(𝑑 ,𝑎4,𝑎5) ∧ sbond1(𝑑 ,𝑎5,_)

+ Carcino(𝑑) =⇒ drugAtom(𝑑 ,𝑎1) ∧ sbond7(𝑑 , 𝑎1,

𝑎2) ∧ sbond1(𝑑 , 𝑎2, 𝑎3) ∧ sbond2(𝑑 , 𝑎3, _))

- Carcino(𝑑) =⇒ drugAtom(𝑑 , 𝑎1), sbond2(𝑑 , 𝑎1, 𝑎2),

sbond1(𝑑 , 𝑎1, _), sbond1(𝑑 , 𝑎2, _))

- Carcino(𝑑) =⇒ drugAtom(𝑑 , 𝑎1), sbond7(𝑑 , 𝑎1, _)

Figure 5: Sample rules learned from the carcinogenesis data
set. Positive rules are labeled with a ‘+’ while negative rules
are labeled with a ‘-’.

this information was extracted from the Microsoft Academic Graph

(MAG, [41]). Here, the task is to predict the coauthorship relation

between two authors. The DDI data set contains information about

drugs and their interactions [11], and the link to be predicted is

whether two drugs interact. For node classification, we consider

three data sets – Carcino, PPMI, CiteSeer, WebKB. Carcino is a

biomedical data set of the structures of chemical compounds; the

task is to predict if they are carcinogenic. PPMI consists of data from
study [30] designed to identify biomarkers that impact Parkinson’s

disease; the task is to predict if a patient has Parkinson’s [12].

CiteSeer is a relational data set of citations [35]; the task is to predict
the author of a citation.WebKB consists of web pages and hyperlinks
from 4 CS departments [7]; the task is to predict if someone is a

faculty member. Table 1 summarizes the seven data sets.
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Algorithm 1 INTEGRATE: Feature and Structure Construction for

GCN

1: Input
2: K Knowledge Base, representing graph 𝐺

3: 𝑡 Target predicate, representing a node or edge type

4: k Number of rules to learn per class

5: Output
6: 𝑅 Rule set used to define features

7: 𝑋 Feature matrix

8: D Distance matrix (to replace Adjacency Matrix)

// Phase 1: Rule Learning
9: 𝑃

obs
← Extract observed instances of 𝑡 from K

10: 𝑅+ ← LearnRelOCC(𝑃
obs

, 𝑘) ⊲ Learn 𝑘 rules for presence

11: 𝑁samp ← RandomSampleMissing(𝑡,K) ⊲ Sample negative

examples

12: 𝑅− ← LearnRelOCC(𝑁samp, 𝑘) ⊲ Learn 𝑘 rules for absence

13: 𝑅 ← 𝑅+ ∪ 𝑅− ⊲ Total set of 2𝑘 rules

// Phase 2: Feature Construction (Counting Satisfactions)
14: 𝐼

cand
← GetAllCandidateInstances(𝑡,K) ⊲ All nodes or

edges to classify

15: Initialize 𝑋 as empty matrix of size |𝐼
cand
| × |𝑅 |

16: for each candidate instance 𝑢 ∈ 𝐼
cand

do
17: for each rule 𝑟𝑖 ∈ 𝑅 where 𝑖 ∈ {1, . . . , 2𝑘} do
18: 𝜃 ← Unify head of 𝑟𝑖 with atom 𝑢

19: 𝑐𝑜𝑢𝑛𝑡 ← CountGroundings(body of 𝑟𝑖 , 𝜃 , K) ⊲

Count satisfied groundings

20: 𝑋 [𝑢] [𝑖] ← 𝑐𝑜𝑢𝑛𝑡

21: end for
22: end for

// Phase 3: Distance Matrix Construction
23: Initialize D as matrix of size |𝐼

cand
| × |𝐼

cand
|

24: 𝐷 ← PairwiseEuclideanDistance(𝑋 ) ⊲ Compute distance

between feature vectors

25: return 𝑅,𝑋,D

Methods. We compare our proposed framework, INTEGRATE,

against four kinds of baselines: relational graph embedding meth-

ods, rule-learning methods, GCN-based methods, and SRL methods.

Under relational graph embedding methods, we consider six base-
lines: ComplEx [46], ConvE [10], SimplE [18], ReInceptionE [51],

the Functional variant of ExpressiveE [34], and HousE+ [27]. Under

rule-based methods, we consider four baselines: Handwritten rules,

rules learned using a differentiable logic system (Neural-LP, [53]),

rules constructed from random walks based on user-defined meta-

paths (metapath2vec, [13]), rules constructed from Path ranking-

based random walks (PRA, [16, 26]), and a logistic regression model

(LR) over propositional features learned using the Node+LinkFeat
algorithm (N+LF, [45]). Under GCN methods, we considerfour base-
lines: R-GCN [40], CompGCN [47] that jointly embeds both nodes

and relations in a graph, NBFNet [56] that uses the generalized

Bellman-Ford algorithm for link prediction, and SEAL [54] that ex-

tracts a local subgraph around each target link. Under SRL methods,

we consider two baselines: MLN-Boost [19] and RDN-Boost [32].

Apart from these, we also compare our methods with GATs [48]

Method ICML ICLR DDI
F1 APR F1 APR F1 APR

ComplEx 0.03 0.04 0.06 0.11 0.62 0.71

ConvE 0.02 0.02 0.07 0.05 0.54 0.68

SimplE 0.02 0.13 0.10 0.54 0.45 0.50

ReInceptionE 0.03 0.14 0.07 0.08 0.53 0.83

ExpressiveE-F 0.02 0.02 0.12 0.95 0.56 0.91

HouseE+ 0.03 0.56 0.11 0.77 0.53 0.84

Handwritten 0.17 0.13 0.66 0.50 0.56 0.58

Neural-LP3 0.05 0.27 0.46 0.42 0.46 0.37

metapath2vec 0.34 0.29 0.48 0.64 0.71 0.71

PRA 0.0 0.51 0.0 0.54 0.53 0.70

N + LF (LR) 0.55 0.40 1.0 0.98 0.79 0.78

R-GCN 0.13 0.13 0.72 0.76 0.73 0.92

CompGCN 0.04 0.19 0.80 0.91 0.68 0.83

NBFNet 0.06 0.76 0.64 0.99 0.62 0.87

SEAL 0.20 0.78 0.67 0.92 0.59 0.85

INTEGRATE 0.56 0.56 0.75 0.97 0.99 1.0
Table 2: Link prediction. Performance of our method, INTE-
GRATE, on the task of link prediction in terms of F1 score
(F1) and AUC-PR (APR), as compared to 6 graph-embedding,
5 rule-based, and 4 GCN-based methods.

and GCNs with the Heat Diffusion (HD) and Personalized Page

Rank (PPR) kernels [22].

Metrics. We compare our method, INTEGRATE, against the base-

lines on link prediction and node classification tasks by quantifying

each method’s performance using two metrics – F1-score and the

area under the precision-recall curve (AUC-PR).

Setup. The INTEGRATE model consists of a GCN with 2 hidden

layers, each of dimension 16, with a dropout layer between the 2

graph convolutional layers. We introduce non-linearity between

input and hidden layers using the ReLU function; we compute

prediction scores using the softmax function. To make predictions

using the scores, we compute the threshold as the average of the

obtained scores in the test set.
2
Finally, note that many of the

baselines assume binary edges. However, out of our six data sets,
only the WebKB data set’s edges are binary. All other data sets have

some hyperedges. So, if a baseline cannot handle hyperedges, we

convert them to

(𝑛
2

)
binary edges.

Results. We can now answer our research questions.

(Q1) We address this question in two parts based on the two

tasks considered:

Part 1: Link prediction. Table 2 compares the perfor-

mance of INTEGRATE on the link prediction task with

two deep learning-based approaches: graph embedding

and GCN-based methods. Our method outperforms all the

baselines significantly in 2 of the 3 data sets, with the dif-

ference being significant in the smaller ICML data set. In

the 3rd data set, INTEGRATE’s performance is comparable

to the baselines. This demonstrates that INTEGRATE is

significantly better than the strong baselines for this task.

2
We run our experiments on a machine with 8 GeForce GTX 1080 Ti cards.
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Method Carcino PPMI CiteSeer WebKB
F1 APR F1 APR F1 APR F1 APR

Neural-LP3 0.13 0.13 0.0 0.56 0.0 0.62 0.0 0.53

metapath2vec 0.41 0.36 0.65 0.79 0.91 0.98 0.28 0.19

PRA 0.0 0.50 0.43 0.62 0.66 0.75 0.47 0.70

N+LF (LR) 0.69 0.73 0.52 0.57 0.73 0.64 0.53 0.48

R-GCN 0.39 0.57 0.74 0.73 0.96 0.99 0.21 0.25

MLNB 0.34 0.30 0.80 0.97 0.96 0.98 1.0 1.0
RDNB 0.27 0.20 0.85 0.95 0.95 0.98 1.0 1.0
INTEGRATE 0.79 0.93 0.61 0.80 0.73 0.82 0.36 0.61

Table 3: Node classification. Performance of our method, INTEGRATE, on the task of link prediction in terms of F1 score (F1)
and AUC-PR (APR), as compared to 4 rule-based methods, R-GCN, and SRL methods

Part 2: Node classification. Table 3 compares the perfor-

mance of INTEGRATE on the node classification task with

GCN and SRL-based methods, respectively. INTEGRATE

outperforms the SRL and GCN baselines in the smaller

Carcino and PPMI data sets while maintaining compara-

ble performance in the others. Hence, INTEGRATE yields

models that are effective at node classification, especially

in small data sets. Rules learned from the DDI and Car-

cino data sets are shown in Figures 4 and 5. Thus, our

evaluations on both tasks support our hypothesis that rule-
based embeddings capture richer abstract features, yielding
more predictive models. The results demonstrate that our

method significantly outperforms GCN baselines, espe-

cially in the smaller domains. On these domains, INTE-

GRATE also outperforms more powerful diffusion-based

GCNs ([22]; table 4). Thus, we can answerQ1 affirmatively.

Further ablation studies are presented in Tables 5 and 6.

(Q2) To evaluate the efficacy of relational density estimation in

learning discriminative rules from small graph data sets,

we compare INTEGRATE with four rule learning methods:

handwritten rules (Gaifman), NeuralLP
3
, metapath2vec

and PRA. Tables 2 and 3 demonstrate that using our density
estimation method significantly outperforms existing rule-
based methods across all domains. Of these, PRAGCN is an

especially interesting baseline since its performance drops

significantly in the highly imbalanced domains. In the im-

balanced domain from link prediction domains (ICML and

ICLR), PRA learns features that classify all examples as

negative. In the imbalanced node classification domains

(Carcino and CiteSeer), PRA features classify all exam-
ples as positive, thus being biased towards a single (the

larger) density. In contrast, INTEGRATE’s relational den-

sity estimation-based rules allow it to better capture both

positive and negative classes, allowing it to achieve high

performance in these challenging domains. This answers

Q2 affirmatively.

(Q3) The main advantage of our method is learning a secondary

graph structure where both link prediction and node clas-

sification tasks become simple prediction tasks. As can be

3
We consider NeuralLP with rules of length 3. Longer rule length has similar perfor-

mance (see appendix).

Figure 6: Comparison (AUC-PR) with GATs showing the im-
portance of node-distance matrix D.

seen from the results for link prediction, a simple discrim-

inative machine learning algorithm (logistic regression),

used on top of the learned features (N+LF), performs better

than the other baselines, including GCN-based. In the case

of node classification, the results are comparable.

To show the importance of using a distancematrix, we com-

pare ourmethodwithGraphAttentionNetworks (GATs, [48]).

Figure 6 shows that using a distance matrix can be an ef-

fective alternative to the original adjacency matrix. We

also compare our approach with variations of GAT mod-

els augmented with PRA-based distance matrices. These

distance matrices yield worse models (Fig. 7). Hence, not

only does INTEGRATE yield a richer feature representa-

tion, but the distance matrices also effectively capture node

relationships; this answers Q3 affirmatively.

(Q4) Figure 8 presents the effect of distance measures on the

performance of INTEGRATE on the DDI data set. We com-

pare INTEGRATE’s Euclidean distance matrix with equiv-

alent models using Manhattan (𝐿1) and Chebyshev (𝐿∞)
distances. Since Euclidean is the shortest distance between

nodes, as expected, it performs the best. This answers Q4.
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Figure 7: AUC-PR comparison with variations of GAT with
PRA features, distance matrix, and distance matrix as adja-
cency matrix.

Figure 8: Link prediction performance on the DDI data set
using INTEGRATE across different choices of distance mea-
sures (Manhattan, Euclidean, and Chebyshev) used to con-
struct the distance matrix.

Data Method Recall Precision F1 AUC-PR

ICML
HD + GCN 0.35 1.0 0.52 0.54

PPR + GCN 0.35 1.0 0.52 0.54

INTEGRATE 0.37 1.0 0.54 0.69

Carcino
HD + GCN 0.60 0.97 0.74 0.90

PPR + GCN 0.61 0.92 0.73 0.88

INTEGRATE 0.66 0.97 0.79 0.93
Table 4: Comparison of the performance of INTEGRATEwith
diffusion-based models on a link prediction domain (ICML)
and a node classification domain (Carcino)

Table 5: Effect of size of hidden layers.

Data Size Recall Precision F1 Score AUC-PR

ICML’18
32 0.37 1.0 0.54 0.69

64 0.37 1.0 0.54 0.69

128 0.37 1.0 0.54 0.69

DDI
32 0.99 1.0 0.99 1.0

64 0.99 1.0 0.99 1.0

128 0.99 1.0 0.99 1.0

Table 6: Effect of number of hidden layers.

Data # Recall Precision F1 Score AUC-PR

ICML’18
3 0.369 1.0 0.539 0.692

4 0.369 1.0 0.539 0.692

5 0.369 1.0 0.539 0.692

DDI
3 0.989 0.998 0.994 0.999

4 1.0 0.997 0.998 0.999

5 0.999 0.991 0.995 0.997

5 Conclusion and outlooks
We presented a method to construct rich yet interpretable graph

embeddings. These embeddings outperform existing methods, es-

pecially on small multi-relational data. There are several directions

for future research. The first is to allow for joint learning and

inference over multiple predicates. Next, instead of a relational

density estimator, one could use more classical rule learning tech-

niques [31, 36, 42] to learn the rules. Finally, our approach could

be made more scalable by integrating sampling and approximate

counting methods [8], reducing the learning time considerably

without sacrificing performance.
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A Additional figures and tables

Table 7: Additional results for the link prediction task

Method

ICML ICLR DDI

F1 APR F1 APR F1 APR

Neural-LP3 0.05 0.27 0.46 0.42 0.46 0.37

Neural-LP10 0.07 0.14 0.43 0.45 0.47 0.4

N+LF (LR) 0.55 0.4 1 0.98 0.79 0.78

N+LF (NN) 0.56 0.41 0.56 0.41 0.82 0.83

HouseE 0.03 0.54 0.11 0.77 0.5 0.67

HouseE+ 0.04 0.56 0.11 0.77 0.53 0.84

ExpressiveE-B 0.02 0.02 0.11 0.96 0.55 0.88

ExpressiveE-F 0.02 0.02 0.12 0.95 0.56 0.91

INTEGRATE 0.56 0.56 0.75 0.97 0.99 1.0

Table 8: Additional results for the node classification task

Method

Carcino PPMI CiteSeer WebKB

F1 APR F1 APR F1 APR F1 APR

Neural-LP3 0.13 0.13 0 0.56 0 0.62 0 0.53

Neural-LP10 0.21 0.16 0.38 0.28 0.32 0.44 0.12 0.01

N+LF (LR) 0.69 0.73 0.52 0.57 0.73 0.64 0.53 0.48

N+LF (NN) 0.7 0.54 0.51 0.34 0.85 0.78 0.57 0.4

INTEGRATE 0.79 0.93 0.61 0.80 0.73 0.82 0.36 0.61
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