
Supplementary Material for Combining Planning and
Reinforcement Learning for Solving Relational Multiagent

Domains
Nikhilesh Prabhakar

The University of Texas at Dallas
Richardson, Texas, USA

nikhilesh.prabhakar@utdallas.edu

Ranveer Singh
The University of Texas at Dallas

Richardson, Texas, USA
ranveer.singh@utdallas.edu

Harsha Kokel
IBM Research

San Jose, California, USA
harsha.kokel@ibm.com

Sriraam Natarajan
The University of Texas at Dallas

Richardson, Texas, USA
sriraam.natarajan@utdallas.edu

Prasad Tadepalli
Oregon State University
Corvallis, Oregon, USA

tadepall@eecs.oregonstate.edu

ACM Reference Format:
Nikhilesh Prabhakar, Ranveer Singh, Harsha Kokel, Sriraam Natarajan,
and Prasad Tadepalli . 2025. Supplementary Material for Combining Plan-
ning and Reinforcement Learning for Solving Relational Multiagent Do-
mains. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 6 pages.

1 REPREL
RePReL[1] is a hierarchical framework that integrates relational
planning and reinforcement learning to solve goal-directed sequen-
tial decision-making problems. It leverages the strengths of both
approaches to improve convergence and enable effective transfer
across multiple tasks. The framework uses a high-level relational
planner to decompose goals into subgoals. These subgoals are then
passed to a low-level reinforcement learning agent that tries to
achieve them with minimal cost. RePReL adapts first-order condi-
tional influence (FOCI) statements to specify bisimilarity conditions
of MDPs, justifying safe and effective abstractions for reinforce-
ment learning. The relational representation used in its hierarchical
ordered planning facilitates generalization across varying num-
bers and types of objects without requiring excessive feature en-
gineering. Empirical evaluations demonstrate RePReL’s superior
performance, efficient learning, and generalization to unseen tasks
compared to other planner-RL combinations, such as TaskableRL.
RePReL’s ability to generalize across a varying number of objects
makes it well-suited for goal-directed relational domains.

2 TASK DISTRIBUTOR
The output of the planner is typically the task decomposition and
does not bind the tasks to the specific agents. We use a task dis-
tributor as part of the relational planner to divide the ordered plan
provided into agent-specific sub-plans using agent constraints for
the different tasks. The grounded plan (high-level plan) and a set of

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA. © 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

ordering constraints are used to distribute the tasks to create agent-
specific plans (sub-plans). A greedy approach is used to schedule
tasks that involve forward chaining [2]. It examines the causal links
between operators and prevents tasks from being assigned to agents
that cannot execute them.

A causal link is defined as an edge between grounded operator
𝑂𝑝 and 𝑂𝑞 if there exists a literal in the effects of 𝑂𝑝 that is also
part of the preconditions of 𝑂𝑞 . The set of causal links is identified
after a plan is derived. The causal links 𝐿 = (𝑙1, 𝑙2, · · · , 𝑙𝑛) define a
partial ordering between operations. Our task distributor ensures
that the same agent performs the causally linked operations.

The current domains shown in our experiment section assume
that a plan can be split into 𝑁 causally independent sub-plans,
where 𝑁 can be the number of tasks or sub-tasks. As mentioned
in Section 3.2, our current implementation of the distributor solely
utilizes a greedy approach with causally linked operators to effi-
ciently allocate sub-plans. Sub-tasks are distributed equally, with
the current implementation treating each subtask with a cost of
1. The agent-specific task distributor focuses on maintaining an
equal task execution cost between agents. Our framework can be
easily extended to handle more complex cost functions as there
is no inherent assumption about the costs. While we used homo-
geneous agents for experiments, there is no inherent assumption
about the types of agents, and hence heterogeneous agents are
easily implementable in the framework. The task distributor for
heterogeneous agents would include a cost function that incor-
porates both task-specific information and the agent’s properties.
This detail can account for different agent skills for more complex
versions of domains such as the dungeon environment, where we
can assign the agents different classes that deal different damages
based on enemy type.

3 MAREPREL METHODS
We describe the two subroutines used by the MaRePReL algorithm,
i.e. GetAgentActions and RePReLStep in detail

3.1 GetAgentActions
The method 1 is used to get the agent actions given the current state,
the current tasks for each agent, the current policy, the D-FOCI
statements, and the set of agents.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We initialize each agent’s actions dictionary with 𝑁𝑈𝐿𝐿 (no-
action). We iterate over the different agents, getting the policy of
the agents based don’t the current task (which decides the operator)
(lines 2-12). Moreover, we use D-FOCI statements 𝐹 along with our
current operator to construct the abstract state 𝑠 from our current
state 𝑠 (line 6) by masking out the irrelevant parts of the current
state for the task at hand. We evaluate the current state against
the terminal condition for the operator to determine whether it is
terminal. In case the state is non-terminal, we use the policy to get
a new action (lines 7-10). Once we have determined the actions
for all the agents, we return a dictionary of their actions (line 13).

Algorithm 1 GetAgentActions
Input: Current state 𝑠 , current agent tasks 𝜙 , current operator
policies 𝜋𝑜 , the D-FOCI statements 𝐹 , and the set of agent 𝐴
Output: The dictionary of actions for the different agents
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

1: Initialize the actions dictionary 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 with 𝑁𝑈𝐿𝐿 action for
each agent

2: for agent 𝑖 ∈ 𝐴 do
3: if current task for agent 𝑖, 𝜙𝑖 is not 𝑁𝑈𝐿𝐿 then
4: Get the current operator 𝑜𝑖 based on current task 𝜙𝑖
5: The agent policy, 𝜋𝑖 ← 𝜋 [𝑜𝑖 ]
6: Get the abstract state 𝑠 based on the current state 𝑠 ,

operator 𝑜𝑖 , and D-FOCI statements 𝐹
7: 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 ← 𝑠 ∈ 𝛽 (𝑜𝑖 )
8: if ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 then
9: The action for the agent 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑖] ← 𝜋𝑖 (𝑠)
10: end if
11: end if
12: end for
13: returns 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

3.2 RePReLStep
The method 2 given the current state 𝑠 , actions for each agent
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 , the operator buffersD, the terminal reward 𝑡𝑅 , the current
tasks for the different agents 𝜙 , the current plan Π, the set of D-
FOCI statements 𝐹 and the set of agents 𝐴, would perform a step in
the environment to return the next state 𝑠 , the updated trajectory
buffers D, agent tasks 𝜙 as well as the flag indicating whether the
current plan is valid 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑 .

The method begins with taking the joint step for the agents in
the environment based on the current state 𝑠 , and agent actions
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 to get the updated state 𝑠′ and agent rewards 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 (line
1) and we initially assume that the current agent-specific plans are
valid (line 2).

We iterate over each agent, and for agents with pending tasks,
we get the current operator for the agent (line 5), the abstract states
𝑠, 𝑠′ based on the D-FOCI rules 𝐹 and operator for the agent 𝑜𝑖 (line
6). We compute whether the current state or the previous state was
terminal (line 7-8). Additionally, we use the multiagent planner
(which defines all the operators) to the current state against the
terminal condition of the agent’s operator. If the current state is
terminal, we add the terminal rewards to the agent’s reward and

Algorithm 2 RePReLStep
Input: The current state 𝑠 , the dictionary of agent actions
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 , the operator buffers D, the terminal reward 𝑡𝑅 , the
current task for the agents 𝜙 , the current plan Π, the D-FOCI
rules 𝐹 , and the set of agents 𝐴
Output: The next state s’, the updated buffers D, the updated
tasks for the different agents 𝜙 , and the plan flag 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑

1: Perform the step in the environment with state 𝑠 using 𝑎𝑐𝑡𝑖𝑜𝑛𝑠
to get the next state 𝑠′ and agent rewards 𝑟𝑒𝑤𝑎𝑟𝑑𝑠

2: 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑 ← 𝑇𝑟𝑢𝑒

3: for each agent 𝑖 ∈ 𝐴 do
4: if the agent task 𝜙𝑖 is ¬𝑁𝑈𝐿𝐿 then
5: Get the current operator for the agent 𝑖, 𝑜𝑖

based on the current task 𝜙𝑖
6: Get the abstract states 𝑠, 𝑠′ using the operator 𝑜𝑖 and

D-FOCI statements 𝐹 for the states 𝑠 and 𝑠′ respectively
7: 𝑤𝑎𝑠𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ← 𝑠 ∈ 𝛽 (𝑜𝑖 )
8: 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑀𝑒𝑡 ← 𝑠 ∈ 𝐼 (𝑜𝑖 )
9: 𝑖𝑠𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ← 𝑠′ ∈ 𝛽 (𝑜𝑖 )
10: if 𝑖𝑠𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 then
11: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 [𝑖] ← 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 [𝑖] + 𝑡𝑅
12: 𝜙𝑖 ← Pop the first task from agent plan Π𝑖

13: else
14: if 𝑤𝑎𝑠𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 or ¬𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑀𝑒𝑡 then
15: 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑 ← 𝐹𝑎𝑙𝑠𝑒

16: end if
17: end if
18: D𝑜𝑖 ← D𝑜𝑖 ∪ {𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑖], 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 [𝑖], 𝑠′}
19: end if
20: end for
21: return 𝑠′,D, 𝜙, 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑

update the agent task based on the planΠ (line 10-12). Additionally,
we check whether the previous state was terminal and whether
the previous state satisfies the precondition of the operator (line
8-9). If the previous state was terminal, or the precondition was not
satisfied, it means that our plan is no longer valid, and we would
need to compute it again (line 12-15). We add the current transition
for the agent to the agent’s operator buffer (line 16). Once all the
agents have been evaluated, we return the successor state 𝑠′, the
updated buffer D, the updated agent tasks 𝜙 , and the 𝑝𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑
flag (line 21)

4 EXPERIMENT DOMAINS
Three relational multiagent domains were considered for the ex-
periments, which are described in the subsequent subsections

4.1 Multiagent Taxi
The agent’s goal in the Multiagent Taxi environment is to transport
all the passengers to their respective destination locations, which
involves picking up the passengers from one location and dropping
them off at another. The observation, action, and rewards for the
environment are defined as follows

For More on RePReL: https://starling.utdallas.edu/papers/RePReL/



(a) Multiagent Taxi (b) Multiagent Office (c) Multiagent Dungeon

Figure 1: Relational Multiagent Domains

(1) Observation: For each agent, the observation would contain
the agent coordinates and the coordinates of the other agents.
For each passenger, we would have its pickup location, drop
location, as well as the taxi the passenger may be in. The
pickup and drop locations are represented as one hot to
indicate one of R, G, B, and Y

(2) Actions: The possible actions for an agent in a given state
are
Move Up
Move Down
Move Left
Move Right
Pickup
Drop

(3) Rewards: There is a -0.1 step cost associated with each step
and a -1 cost associated with a no-move action. A reward
of +20 will be provided for each pickup and drop. There is a
high negative penalty of -100 for crashing into other agents
followed by episode termination

(4) Number ofAgents:While the environment can be extended
to four agents, we considered only two agents for the exper-
iments.

4.2 Multiagent Office
The goal in the Multiagent Office environment is to finish all the
designated tasks in the environment, which can be either visiting
locations – A, B, C, or D –, picking up coffee (C) or mail (M) and
potentially dropping off to the office (O). The observations, actions,
and rewards for the environment are defined as follows

(1) Observation: The observations for each agent would con-
tain each agent’s position, inventory for coffee and mail, and
the facts of the environment state which is an indicator for
each task possible in the environment and the value may
indicate the agent which completed the task first

(2) Actions: The possible actions for an agent in a given state
are
Move Up
Move Down

Move Left
Move Right

There are no separate pickup and drop actions, as an item
like mail or coffee is automatically added to the inventory
when the agent moves to its location in the environment.

(3) Rewards: There is a -0.1 step cost associated with each step
and a -1 cost for each invalid action. There is a -30 reward
for bumping into other agents. There is a terminal reward
of 100 provided to all the agents for completing the tasks in
the episode

(4) Number ofAgents:While the environment can be extended
to accommodate 𝑛 agents, we only consider the case with
two agents for the experiments.

4.3 Multiagent Dungeon
The goal in the multiagent dungeon environment is to escape by
unlocking the door using the keys collected by defeating all the
enemies present in the environment. The enemies can be either
skeletons with normal attack and hit points or dragons with high
attack and normal hit points. The observation, actions, and rewards
for the environment are defined as follows

(1) Observation: The observation space for each agent would
contain each agent’s location and orientation, attack, hit
points, and defense stance value. It also contains the location,
hit points, key status (a binary indicating whether the key
is in the door), and another binary value indicating if the
agent is holding it. Finally, there is the door location as a
value indicating the door-locked status

(2) Actions: The possible actions for an agent in the environ-
ment are
Move Up
Move Down
Move Left
Move Right
Attack
Defend
Pickup
Unlock

For More on RePReL: https://starling.utdallas.edu/papers/RePReL/



When an agent dies, it can no longer act in the environment.
Moreover, any keys the agents collect are spawned at the
agent’s last location.

(3) Rewards: There is a -0.1 step cost associated with the en-
vironment. Moreover, there is a terminal reward of +100
provided to each agent, when the door is unlocked. There
are no rewards provided to any dead agents

(4) Number of Agents: While the domain can be expanded
to handle 𝑛 agents, we consider only three agents for our
experiments.

5 MAREPREL ABSTRACTIONS
MaRePReL employs an abstract state representation for its under-
lying RL policies, with the specific abstraction varying for each
operator within a given domain. The D-FOCI statements corre-
sponding to each operator are utilized to construct its abstract state
and observation. Below, we present the abstract state used for each
domain

5.1 Multiagent Taxi
The domain has two operators, pickup and drop. The abstract
state representation considers both the passenger as well as the
agent. The abstract representation for the operators is provided
below

(1) pickup: The abstract state representation contains the loca-
tions (x, y) for all the agents, as well as the pickup location
for the agent (one of R, G, B, and Y represented as a one-hot
encoding in the observation), as well as the taxi_id indicating
the taxi the passenger is in (0 if the passenger is not in any
taxi).

(2) drop: The abstract state representation contains the loca-
tions (x, y) for all the agents, as well as the taxi_id for the
taxi the passenger is in and the drop location for the agent
(one of R, G, B, and Y represented as a one-hot encoding in
the observation)

5.2 Multiagent Office
The domain has two operators as well, visitOrPickup (picking
up something is the same as moving to the place of the object in
question), and deliver. The abstract state representation considers
both the agents and the location (objects) in question

(1) visitOrPickup: The abstract state representation contains
the location (x,y) of all the agents, the current agent’s inven-
tory (mail, coffee), as well as the corresponding fact (value
indicating which agent performed the task).

(2) deliver: The abstract state representation contains the lo-
cations (x, y) of all the agents, the object inventory, and the
fact corresponding to visit office

5.3 Multiagent Dungeon
Like the other domains, Multiagent Dungeon has two operators as
well attackEnemy and getKeyinDoor. The operators are parame-
terized by the agent as well as the enemy. The abstract representa-
tion for the operators is provided below

(1) attackEnemy: The abstract state consists of all the agent
locations (x, y), as well as the orientation, hp, and defense
of the current agent. Furthermore, we include the current
enemy’s location (x, y) and hit points.

(2) getKeyInDoor: The abstract state consists of all the agent’s
locations (x, y), the current enemy location (x,y), and its’
corresponding key’s status.

6 EXPERIMENT HYPERPARAMETERS
The learning algorithm for DQN (independent learners, parameter
sharing, and sub-plan embeddings) and MaRePReL is DQN imple-
mented using the ray rllib 1 package in Python. The last baseline
used is Q-Mix, which is also implemented using ray rllib. All the
hyperparameters used except the ones described are the default
parameters provided in ray for DQN or Q-Mix.

6.1 Hyperparameters Dictionary
The different unique parameters and the values assigned to them
are described below
• model[epsilon_timesteps]: The total number of time steps
over which the epsilon is reduced from its initial value to
the final value
• model[final_epsilon]: The final epsilon value used after
the initial reduction for the remainder of the run
• model[target_network_update_frequency]: The num-
ber of steps after which we do a backward pass to update
the target network parameters
• model[fcnet_hidden]: It is a list that determines the num-
ber and size of the hidden layer for the model. A value of
[256, 256] means that there are two hidden layers of size 256
each.
• model[fcnet_activation]: The activation function used in
the DQN network
• model[lstm_cell_size]: The size of the lstm cell used for
the model
• model[max_seq_len]: The maximum length used while
using lstm in the algorithm
• replay_buffer[type]: The type of replay buffer used by
the DQN to store the trajectories. The one used throughout
the experiments is a MultiAgentPrioritizedReplayBuffer. As
the name indicates, it is a combination of Prioritized Replay
Buffer and Multiagent Replay Buffer. The buffer stores the
state-action transitions for the different agents, with the
different transitions relative sample frequency determined
by metrics such as the TD-error
• replay_buffer[capacity]: The number of transitions that
could be stored in the buffer
• optimizer[alpha]: The learning rate parameter for the net-
work
• optimizer[epsilon]: For the optimizer, it is the value added
to the gradients to prevent dividing by 0 errors.
• double_q: A boolean flag indicating whether to use double
DQN instead of the standard DQN algorithm.
• n_step: The number of steps used for bootstrapping in multi-
step TD learning

1https://docs.ray.io/en/latest/rllib/index.html

For More on RePReL: https://starling.utdallas.edu/papers/RePReL/



Hyperparameter Value
exploration_config[epsilon_timesteps] 10000
exploration_config[final_epsilon] 0.05
model[fcnet_hidden] [256, 256]
model[fcnet_activation] relu
target_network_update_frequency 2000
train batch size 128
replay_buffer_[type] MultiAgentPrioritized

ReplayBuffer
lr 0.001
replay_buffer_config[capacity] 300000
double_q true
n_step 4

Table 3: DQN (Independent Learners, Parameter Sharing,
Plan Embeddings) lower level policies hyperparameters for
MultiAgent Dungeon

• train_batch_size: The size of the train batch used when
training the model
• lr: The learning rate for the network
• mixing_embed_dim: The size of the hidden layer in the
mixing dimension in the Q-mix network. Only applicable in
the case of Q-Mix

6.2 Hyperparameters for the different models
and experiments

Hyperparameter Value
exploration_config[epsilon_timesteps] 10000
exploration_config[final_epsilon] 0.01
target_network_update_frequency 2000
train batch size 128
replay_buffer[type] MultiAgentPrioritized

ReplayBuffer
replay_buffer[capacity] 300000
model[fcnet_hidden] [256, 256]
model[fcnet_activation] relu
double_q true
n_step 4

Table 1: DQN (Independent Learners, Parameter Sharing,
Plan Embeddings) and MaRePReL lower level policies hyper-
parameters for MultiAgent Taxi

Hyperparameter Value
exploration_config[epsilon_timesteps] 10000
exploration_config[final_epsilon] 0.01
model[fcnet_hidden] [256, 256]
model[fcnet_activation] relu
target_network_update_frequency 500
train batch size 128
replay_buffer_[type] MultiAgentPrioritized

ReplayBuffer
replay_buffer_config[capacity] 300000
double_q true
n_step 4

Table 2: DQN (Independent Learners, Parameter Sharing,
Plan Embeddings) lower level policies hyperparameters for
MultiAgent Office

For More on RePReL: https://starling.utdallas.edu/papers/RePReL/



Hyperparameter Value
mixing_embed_dim 256
optimizer[alpha] 0.99
optimizer[epsilon] 1e-5
model[lstm_cell_size] 64
model[max_seq_len] 200
model[fcnet_hidden] [256, 256]
model[fcnet_activation] relu
exploration_config[epsilon_timesteps] 10000
exploration_config[final_epsilon] 0.01
target_network_update_frequency 2000
train batch size 128
replay_buffer_[type] ReplayBuffer
replay_buffer_config[capacity] 100000
double_q true

Table 4: QMIX hyperparameters for Multiagent Taxi and
Multiagent Office

REFERENCES
[1] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, and

Prasad Tadepalli. 2021. Reprel: Integrating relational planning and reinforcement
learning for effective abstraction. In Proceedings of the International Conference on
Automated Planning and Scheduling, Vol. 31. ICAPS, Guangzhou, China, 533–541.

[2] Jonas Kvarnström. 2011. Planning for loosely coupled agents using partial order
forward-chaining. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 21. ICAPS, Freiburg, Germany, 138–145.

For More on RePReL: https://starling.utdallas.edu/papers/RePReL/


	1 RePReL
	2 Task Distributor
	3 MaRePReL Methods
	3.1 GetAgentActions
	3.2 RePReLStep

	4 Experiment Domains
	4.1 Multiagent Taxi
	4.2 Multiagent Office
	4.3 Multiagent Dungeon

	5 MaRePReL Abstractions
	5.1 Multiagent Taxi
	5.2 Multiagent Office
	5.3 Multiagent Dungeon

	6 Experiment Hyperparameters
	6.1 Hyperparameters Dictionary
	6.2 Hyperparameters for the different models and experiments

	References

