
Combining Planning and Reinforcement Learning for Solving
Relational Multiagent Domains

Nikhilesh Prabhakar∗
The University of Texas at Dallas

Richardson, Texas, USA
nikhilesh.prabhakar@utdallas.edu

Ranveer Singh∗
The University of Texas at Dallas

Richardson, Texas, USA
ranveer.singh@utdallas.edu

Harsha Kokel
IBM Research

San Jose, California, USA
harsha.kokel@ibm.com

Sriraam Natarajan
The University of Texas at Dallas

Richardson, Texas, USA
sriraam.natarajan@utdallas.edu

Prasad Tadepalli
Oregon State University
Corvallis, Oregon, USA

tadepall@eecs.oregonstate.edu

ABSTRACT
Multiagent Reinforcement Learning (MARL) poses significant chal-
lenges due to the exponential growth of state and action spaces and
the non-stationary nature of multiagent environments. This results
in notable sample inefficiency and hinders generalization across
diverse tasks. The complexity is further pronounced in relational
settings, where domain knowledge is crucial but often underuti-
lized by existing MARL algorithms. To overcome these hurdles, we
propose integrating relational planners as centralized controllers
with efficient state abstractions and reinforcement learning. This
approach proves to be sample-efficient and facilitates effective task
transfer and generalization.

KEYWORDS
Multiagent Learning, Relational Reinforcement Learning, Statistical
Relational Learning, Abstraction, Planning

ACM Reference Format:
Nikhilesh Prabhakar[1], Ranveer Singh[1], Harsha Kokel, Sriraam Natara-
jan, and Prasad Tadepalli . 2025. Combining Planning and Reinforcement
Learning for Solving Relational Multiagent Domains. In Proc. of the 24th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 10 pages.

1 INTRODUCTION
Building multiple agents capable of learning to reason and act under
uncertainty in large and complex environments has long been a
cherished goal of AI. Reinforcement learning (RL) [37] and multia-
gent RL [1] techniques have long been developed for learning under
uncertainty and in the presence of multiple agents, respectively.
Several previous research efforts have extended these methods
to hierarchical domains with multiple levels of state and action
abstractions [7, 36, 38].

1*Equal contribution

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA. © 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Statistical Relational Learning and AI (StaRAI) [11, 32], on the
other hand, have dealt with learning in the presence of varying num-
bers of objects and relations, i.e., in relational domains. However,
relational RL [8] is relatively unexplored, and while some methods
exist [42], they do not scale for large tasks and are certainly not
easily extensible to multiagent settings. A promising direction is
exploiting the combination of hierarchical (and relational) planning
to explore multiple levels of abstraction and RL to learn lower-level
policies [16, 20].

Inspired by the success in these different sub-areas of AI, we pro-
pose a method that leverages the power of a relational hierarchical
planner to act as a centralized controller for multiagent learning in
noisy, relational domains. Our proposed approach, calledMultiagent
Relational Planning and Reinforcement Learning (MaRePReL), uses
planning for task decomposition, centralized control, and agent al-
location, StaRAI for constructing task-specific representations, and
deep RL for effective and efficient learning with these specialized
representations.

We make the following key contributions: (1) As far as we are
aware, we present the first multiagent system for relational mul-
tiagent domains that can generalize across multiple objects and
relations. As we show in the related work, significant literature
exists in multiagent systems, relational learning, and the integra-
tion of planning and learning. Ours is the first work to combine all
these directions in the context of multiagent systems. (2) To achieve
this, we develop MaRePReL, an integrated planning and learning
architecture capable of multiagent learning under uncertainty in
relational domains. Specifically, MaRePReL’s effective learning and
reasoning power stems from its representation of relational in-
formation, the decomposition of higher-level plans, and the use
of deep RL at the lowest level. (3) Finally, we demonstrate our ap-
proach’s effectiveness and generalization abilities in a few relational
multiagent domains. We compare against different deep RL based
multiagent baselines, including one that explicitly uses the sub-task
information, and illustrate the superiority of our approach.

The rest of the paper is organized as follows: after reviewing
the related work and presenting the necessary background, we
outline our multiagent framework and discuss the algorithm in
greater detail. We then present the experimental evaluation on a
few relational multiagent domains before concluding the paper by
discussing the areas of future research.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

MARL

HRL RRL

MaxQ [7]

Options [38]

TaskableRL [16]

RRL [8]

MARRL [4]

Rex-D [28]

Fitted Q [5]

HMARL [12]
MARL-DILP [24]HSD [47]

ALMA [17]
Haven [46]

RePReL [20]
HRRL [35]

MaRePReL

MADDPG [26]
Q-FTRL [19] M-QMIX [23]

QMIX [33]

Figure 1: Our proposed framework w.r.t existing literature
on relational, hierarchical, and multiagent RL

2 RELATEDWORK
Research in RL in the past three decades has focused on several ex-
tensions that make them adaptable to several real-world scenarios.
First, Hierarchical Reinforcement Learning (HRL) methods have
been introduced to manage complex tasks by decomposing them
into smaller, more manageable subtasks [36]. These allow for more
efficient learning and problem-solving by utilizing multiple levels
of abstraction. Second, Relational Reinforcement Learning (RRL)
addresses the complexity of environments where states and ac-
tions consist of objects and the relationships between those objects
[8]. RRL exploits a higher-order representation of the underlying
relational structure to improve learning in such domains. Third,
Multi-Agent Reinforcement Learning (MARL) has been developed
to handle environments where dynamic changes arise from the
presence and actions of other agents, making it particularly use-
ful in competitive or cooperative multi-agent settings [1]. Before
introducing our framework, which addresses all three challenges,
namely hierarchies, relational structures, and multi-agent domains,
we review the relevant literature for these three RL extensions.

Hierarchical Reinforcement Learning (HRL) algorithms
have been developed to tackle the complexity of long-horizon tasks
by breaking them down into smaller, more manageable subtasks.
Frameworks such as the Options [38] and MAXQ [7] facilitate
the learning of hierarchical policies across multiple levels of ab-
straction. By exploiting temporal abstraction, HRL transforms the
original long-horizon task into a sequence of shorter-horizon sub-
tasks, where each subtask represents a high-level action that spans
a longer period than the lower-level actions carried out by agents
deeper in the hierarchy. This hierarchical structure enhances the
agent’s ability to operate effectively over extended time horizons
and significantly improves learning efficiency [31].

Multiagent Reinforcement Learning (MARL) extends rein-
forcement learning to systems with multiple agents, where they

interact with the environment to maximize cumulative rewards [1].
However, MARL introduces its own unique set of challenges. The
first challenge is the curse of dimensionality, where the increasing
number of agents leads to an exponential increase in the sizes of
state and action spaces. The second challenge is the non-stationary
nature of the environment due to the actions taken by the other
agents. The final issue for MARL is the sample inefficiency due to
the large amount of data required to train such agents [48].

Numerous solutions have been proposed to address the chal-
lenges outlined above, falling into two main categories: those adapt-
ing the underlying architectures for the RL agents and those consid-
ering the overall tasks performed by the agents. In the former cate-
gory, methods use function approximation techniques to combat
the curse of dimensionality [2]. In addition, Centralized Training,
and Decentralized Execution (CTDE) methods such as QMIX and
MADDPG address the non-stationary nature of the environment
[26, 33]. Generative modeling or mask reconstruction algorithms
[19, 23] also fall in this category. In the latter category, hierarchical
approaches such as HMARL [12] and HSD [47] utilize task decom-
position and hierarchical structures in multiagent settings to define
task abstractions and improve sample inefficiency by filtering out
irrelevant parts of the state space. Additionally, the structured task
hierarchies introduced in such methods can facilitate agent commu-
nication to address the non-stationary nature of different multia-
gent environments. While powerful in standard propositional (and
continuous) settings, these methods do not address the challenge
of a rich, relational structure in the environment.

Relational Reinforcement Learning (RRL) considers the
task of learning in environments where states and actions involve
relationships between objects and their properties, i.e., relational
domains [8]. In these domains, RL agents must explicitly learn to
reason about and exploit the relationships between objects [39].
Previously, several works have demonstrated the need for a rich
relational representation to be explicitly used inside the learning al-
gorithms as against simply grounding all the objects and obtaining a
feature-based representation [32, 40]. A key advantage of relational
representations is their ability to support abstractions and facili-
tate generalization and effective transfer across tasks [11, 27, 41].
However, finding optimal policies in many relational domains is in-
tractable even for moderately large problems [39]. To mitigate this
issue, algorithms that incorporate guidance and domain knowledge
as constraints on the policy space have been developed [28].

Planning and RL integration have been explored to exploit
the power of hierarchical planning with deep RL enabling the use of
HRL in continuous domains. While Taskable RL [16] demonstrated
significant performance improvement, the underlying planner was
still propositional, limiting their applicability to relational problems
with varying numbers of objects and relations.

An ideal RL learning algorithm should be able to not only handle
the rich relational structure of the domain but also have the ability
to represent and reason with the decomposition of complex tasks
into smaller ones. In other words, the algorithm must be capable
of representing and reasoning with both hierarchies and relational
structures. One such recent framework, RePReL [20], employs a
hierarchical relational planner to implement task-specific policies
and uses Deep RL to work on hybrid relational domains [20, 21]. To
interface the higher-level planner with the Deep RL, a hand-crafted

abstract reasoner is employed to lift the reasoning process and con-
struct smaller lower-level Markov Decision Processes (MDPs) that
can be solved efficiently. This approach has been demonstrated to
be successful in domains with varying numbers of objects, complex
task structures, and continuous state-action spaces.

While the RePReL framework successfully handled relations and
hierarchies in continuous spaces, it can not handle multiagent sys-
tems. More precisely, given the three-pronged challenge of complex
task structures, rich object-centric environments, and multiagent
domains, several advances have been made in each of these specific
directions. Also, in the recent past, methods that arise from the com-
binations of these methods – for instance, HRL with RRL [7, 20, 35],
MARL with RRL [4, 24], HRL with MARL [12, 17, 46, 47] – have
been proposed. However, no significant research encompasses all
three of these challenges (see Figure 1).

It is precisely this gap that we aim to address in this work. Specif-
ically, we extend the RePReL framework to multiagent settings,
utilizing the planner as both a scheduler and a centralized con-
troller. Unlike RePReL, where the planner is solely responsible
for task decomposition, our proposed framework also distributes
tasks among multiple agents. This key enhancement enables our
approach to effectively solve relational multiagent domains, as we
explain in the next section.

3 MULTIAGENT RELATIONAL PLANNING
AND REINFORCEMENT LEARNING
(MAREPREL)

We consider the problem of coordinating multiple agents to solve
continuous, relational problems. We will first provide a high-level
overview of our framework, MaRePReL, combining relational and
hierarchical planning with deep reinforcement learning before
defining the problem formally. MaRePReL employs the following:

(1) Planner as controller: One of our key contributions is
to view the (relational) planner as a centralized controller
that obtains the current state as input and creates a set of
agent-specific plans. In the spirit of two-level systems, the
planner not only decomposes the tasks into subtasks but also
assigns the subtasks to appropriate agents. To facilitate this,
the controller consists of two specific components:

(a) Relational Hierarchical Planner: Recall that the goal
is to decompose tasks in the presence of varying numbers
of objects and relations between them. Consequently, the
first sub-component is a relational, hierarchical planner,
which uses a first-order representation to model the ob-
jects and relationships in the domain. As one can view
hierarchies as a specific form of relations, this planner can
decompose the goals into a temporally ordered series of
subgoals.

(b) Task Distributor: The planner output is typically the
task decomposition and does not bind the tasks to the
specific agents. We use a task distributor as part of the
relational planner to divide the ordered plan provided into
agent-specific sub-plans using agent constraints for the
different tasks.

(2) Abstraction Reasoner: Following the previous work on
single-agent learning (RePReL), we use Dynamic-First Order

Conditional Influence (D-FOCI) statements [29] to capture
domain knowledge that is then used to reason and construct
the relevant parts of the state space that the lower-level RL
agents use. This step at the outset is similar to RePReL, where
the inference step is still hand-crafted, and leveraging lifted
inference [40] to perform this step automatically remains
a future direction. However, it must be emphasized that
this step is more difficult in the multiagent setting as the
optimal allocation of tasks to agents requires considering all
agent states. Hence, typical single-agent-based abstraction
reasoners do not suffice for this setting as they do not capture
the true optimal value functions.

(3) Multiple Deep RL agents: Given the current subtask from
the planner, the corresponding (deep) RL agent identified
by the task distributor learns a generalizable, task-specific
policy. Assuming that the abstraction reasoner identifies the
relevant part of the state space, learning is both effective and
efficient with the additional advantage of being generalizable
since the learned policies can be shared among multiple
agents (as shown in our experiments).

The broad overview of our proposed approach is presented in
Figure 2. The planner decomposes the higher-level tasks into ap-
propriate lower-level tasks using a relational representation of the
current state and lifted operators. The distributor identifies the
appropriate RL agent for the current subtask, thus making this
combination an effective centralized controller. Given the subtask
and the current (abstract/relational) state, the abstraction reasoner
selects a smaller state representation by identifying the appropriate
parts of the state space that are relevant to the current subtask.
Finally, the RL agent either learns the policy or executes the ones
it already learned (for instance, agent 𝐴1 might have learned the
pickup subtask that can be used directly by agent𝐴2 to execute this
specific subtask). Note that while our experiments assume all the
agents to be homogenous, this is not a necessary assumption for
our formulation, where specific constraints can be used to allocate
the tasks accordingly.

3.1 Problem Formulation
While one could envision using relational partially observable
MDPs (RPOMDPs) to model the problem with the current task
being the hidden component, issues arise when modeling it as one.
First, the abstraction reasoner has to track the current hidden state
actively. Second, the use of decentralized RPOMDPs [44] requires
creating multiple RMDPs one for each task-agent formalism which
would, in general, be larger than the smaller RMDPs created by our
formalism using abstractions. Finally, for larger agent-task com-
binations, the reasoning over belief states requires approximate
probabilistic inference over relational states and lifted probabilistic
inference, which is outside the current work’s scope. Therefore, we
consider modeling the problem using Markov games [25]. We build
upon the framework of relational Markov games [10], extending it
to handle goal-oriented problems. We formalize this extension as a
goal-directed relational Markov game (GRMG), defined as follows:

Definition 1: A goal-directed relational Markov Game (GRMG) is
represented as𝑀 = ⟨𝑁, 𝑆,𝐴𝑖

𝑖∈𝑁 , 𝑃, 𝑅
𝑖
𝑖∈𝑁 , 𝛾,𝐺⟩ where𝑁 is the number

of agents, 𝑆 is the set of (relational) states, 𝐴𝑖 is the set of actions for

Figure 2: MaRePReL architecture and application in the taxi world for the task of transporting two passengers

the 𝑖𝑡ℎ agent, and 𝐴 B 𝐴1 ×𝐴2 × ×𝐴𝑁 is the joint action space,
𝑃 = 𝑃𝑟 (𝑠′ |𝑠, 𝑎) is the transition probability function for transitioning
from 𝑠 to 𝑠′ where 𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴, 𝑅𝑖 = 𝑆 ×𝐴×𝑆 → R (set of real
numbers) is the reward function for the 𝑖𝑡ℎ agent, representing the
instantaneous reward received by the agent on transitioning from one
state to next after taking action, 𝛾 ∈ [0, 1) is the discount factor, 𝐺 is
the set of goals, the agents need to achieve. The states 𝑆 and actions 𝐴
are defined by the set of objects 𝐸, predicates 𝑄 , and action types 𝑌 .

MaRePReL solves GRMGs using a combination of multiagent
planning and RL, as shown in Figure 2. A problem instance for a
GRMG is defined similarly to in GRMDP [20] as a pair (𝑠 ∈ 𝑆, 𝑔 ∈ 𝐺),
where 𝑠 and𝑔 is the initial state and the goal (a partial state), defined
by a set of positive or negative literals. The success probability of a
joint policy (say 𝜋) is the probability of all the goals 𝑔 ∈ 𝐺 being
achieved under the policy 𝜋 . The expected utility of the joint policy
is the expected total discounted reward before the policy terminates,
either due to the successful completion of goals or timing out from
exceeding the maximum possible length of the trajectory.

3.2 Relational Planner
The environment’s state can be represented as an abstract planning
problem using a planning description language [13]. The hybrid
planning domain 𝐷 = ⟨𝑄,𝑂,𝐶,𝑀⟩, consists of a set of predicates 𝑄
that describes the current state, a finite set of operators 𝑂 which
are the high-level actions executable by the agents, a set of order-
ing constraints 𝐶 that is necessary to construct a consistent plan,
and methods 𝑀 that can decompose the goal set into an ordered
sequence of operators. A multiagent planning (MAP) problem can
be defined as follows:

Definition 2 For a given domain D, a Multiagent Planning (MAP)
problem 𝑃 = ⟨𝐷, 𝑆,𝐺,𝐴𝐺⟩, consists of the initial state of the problem
𝑆 , the set of goals 𝐺 that need to be completed, and a group of agents
𝐴𝐺 that need to coordinate together to reach the goal state.

For the above MAP problem, the planner plays a crucial role by
controlling the tasks performed by each agent. It maps the target

set of goals𝐺 into a set of grounded task-specific operators 𝑂 and
distributes them to different agents. Hierarchical Task Network
(HTN) planners such as SHOP [30] can be used to generate a total
order plan for a given instance of the environment. The grounded
plan (high-level plan) and a set of ordering constraints are used
to distribute the tasks to create agent-specific plans (sub-plans).
A greedy approach is used to schedule tasks that involve forward
chaining [22]. It examines the causal links between operators and
prevents tasks from being assigned to agents that cannot execute
them. The causal links 𝐿 = (𝑙1, 𝑙2, · · · , 𝑙𝑛) define a partial ordering
between operations. Each link is of the form (𝑂𝑝 , eff,𝑂𝑞) where eff
is the effect of completing task 𝑂𝑝 and one of the preconditions
for task 𝑂𝑞 [45]. Our task distributor ensures that the same agent
performs the causally linked operations.

For each agent 𝑎, the task distributor returns a partial plan
Π𝑎 = [𝑜1, 𝑜2, 𝑜3, ..., 𝑜𝑛] where 𝑜 is an operator with 𝐼 (𝑜) being the
precondition of the operator and 𝛽 (𝑜) being the necessary effects
of the operator. Since the operators only consider the action space
of the agent currently using them, and the operators are shared
among the different agents, all working on the same underlying en-
vironment, we can define the sub-goal RMDPM𝑜 for each operator
to solve the problem like in RePReL [20].

3.3 Task-specific Abstraction
While the planner decomposes the task and the task distributor
identifies the appropriate agent, the resulting state space can still
be prohibitively expensive for effective learning. Consequently, the
abstraction reasoner becomes crucial in constructing a smaller state
space. In GRMG, states are represented as conjunctions of literals.
Like RePReL, prior knowledge that describes the relation between
rewards, and sub-goals is then described using an extended First
Order Conditional Influence statements (FOCI) [29] called Dynamic
FOCI (D-FOCI) statements. D-FOCI statements, represented by an
example below, are the first-order language rules used to specify
the direct conditional influences between literals in the domain.

Algorithm 1MaRePReL algorithm
Input: Multiagent Planner P, Operators 𝑂 , Agents 𝐴, goal set
𝑔, D-FOCI statements 𝐹 , num of iterations 𝑖 , num of episodes
per iteration 𝑘 , batch size 𝑏, terminal reward 𝑡𝑅
Output: RL policies 𝜋 = {𝜋𝑜 |∀𝑜 ∈ 𝑂}

1: Initialize the RL policies 𝜋 = {𝜋𝑜 |∀𝑜 ∈ 𝑂} and buffers D =

{D𝑜 |∀𝑜 ∈ 𝑂}
2: for iteration ∈ 𝑖 do
3: for episode ∈ 𝑘 do
4: 𝑠 ← starting state of the environment
5: Π ← P(𝑠, 𝑔)
6: 𝜙 ← Pop the first task for each agent from Π
7: while 𝜙 is not empty do
8: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← GetAgentActions(𝑠, 𝜙, 𝜋, 𝐹, 𝐴)
9: 𝑠,D, 𝜙, PlanValid←

RePReLStep(𝑠, actions,D, 𝑡𝑅, 𝜙,Π, 𝐹 , 𝐴)
10: if not 𝑃𝑙𝑎𝑛𝑉𝑎𝑙𝑖𝑑 then
11: Π ← P(𝑠, 𝑔) ⊲ Recompute the plan
12: 𝜙 ← Pop the first task for each agent in Π
13: end if
14: end while
15: end for
16: for each operator 𝑜 ∈ 𝑂 do
17: Sample batch D𝑏 from the corresponding buffer D𝑜
18: Update Policy 𝜋𝑜 using the buffer D𝑏
19: end for
20: end for
21: return 𝜋

The rules defined over the predicates by a domain expert express
the relation between domain predicates at a different time step.

𝑝𝑖𝑐𝑘𝑢𝑝 (𝑃,𝑇) : {𝑡𝑎𝑥𝑖 (𝑇, 𝐿1), 𝑎𝑡 (𝑃, 𝐿)} +1−−→ 𝑖𝑛_𝑡𝑎𝑥𝑖 (𝑃,𝑇)

The above rule states that when executing a task 𝑝𝑖𝑐𝑘𝑢𝑝 (𝑃,𝑇),
only the location 𝐿1 of taxi 𝑇 and the pickup location 𝐿 of passen-
ger 𝑃 influence the state predicate 𝑖𝑛_𝑡𝑎𝑥𝑖 . The relational planner
provides agent-specific plans that contain the grounded operators.
Substituting the variables grounded by our planner in the D-FOCI
statements will provide us with the set of literals on which our
task-based RL policies can be trained. If the sub-plan for agent
𝑡1 contains the grounded operator 𝑝𝑖𝑐𝑘𝑢𝑝 (𝑝1, 𝑡1), we can use the
substitution 𝜃 = {𝑃/𝑝1,𝑇 /𝑡1, 𝐿/𝑟, 𝐿1/𝑙1} to get the grounding,

𝑝𝑖𝑐𝑘𝑢𝑝 (𝑝1, 𝑡1) : {𝑡𝑎𝑥𝑖 (𝑡1, 𝑙1), 𝑎𝑡 (𝑝1, 𝑟)} +1−−→ 𝑖𝑛_𝑡𝑎𝑥𝑖 (𝑝1, 𝑡1)

which provides us with information on the relevant state literals for
the task 𝑝𝑖𝑐𝑘𝑢𝑝 (𝑝1, 𝑡1) as 𝑡𝑎𝑥𝑖 (𝑡1, 𝑙1), 𝑎𝑡 (𝑝, 𝑟), and 𝑖𝑛_𝑡𝑎𝑥𝑖 (𝑝1, 𝑡1).
This implies that the task of picking up 𝑝1, when assigned to 𝑡1,
only needs the information above, and the locations and in-taxi
conditions of other passengers and taxis in the domain can be
masked while learning an RL policy.

To summarize, the abstraction reasoner performs two specific
steps – first, it uses the domain knowledge as first-order logic
statements to construct an abstract MDP and then grounds the
MDP to construct the smaller ground MDP that an underlying
Deep RL agent can solve. Automating these two steps fully, either

using advances inside the lifted inference community or an LLM-
based approach, remains an interesting future direction. At the
lowest level are different RL agents, which, after acquiring the
MDP, proceed to solve them appropriately.

3.4 MaRePReL Algorithm
Algorithm 1 presents the procedure where we initialize the RL
policies and buffers for various operators (line 1). The policies
learned through our approach are a collection of task-specific oper-
ations. While one or more agents still have pending subtasks, we
continuously collect trajectories from the environment for different
operators, storing them in respective operator buffers (lines 7-15).
In each episode, we first get the starting state from the environment
(line 4), and obtain the current tasks for each agent by comput-
ing their sub-plans using our relational multiagent planner, which
is implemented by combining a SHOP [30] planner with branch
and bound scheduling (line 5-6). While one or more agents have
some task remaining, we first compute the joint actions for the
agents based on the current state, agent tasks, task policies, and the
D-FOCI statements using the GetAgentActions method (line 8).
Upon obtaining the joint action, we perform a step update using
the RePReLStep method (line 9). This step involves updating
the state, buffers, plan, and tasks based on the D-FOCI rules for
abstractions. Following RePReL’s approach, the method returns the
updated components along with a flag indicating the validity of
the current plan. If the plan is considered invalid — one or more
agents cannot perform the tasks assigned to them— then new agent-
specific plans (subplans) are computed, and the agents are assigned
new tasks (lines 10-13). Once the episode has ended, we train a
policy for each operator 𝜋𝑜 using a batch sampled from the buffer
for the operator (line 16-19). Once trained, the final policies for the
different operators are returned. The methods GetAgentActions
and RePReLStep are further detailed in the supplementary 1

4 EXPERIMENTAL RESULTS
We present our results across different tasks in three relational mul-
tiagent domains that demonstrate the effectiveness of MaRePReL.
We answer the following questions explicitly.
(1) Does MaRePReL improve sample efficiency ?
(2) DoesMaRePReL efficiently transfer from one task to another?
(3) Does MaRePReL generalize to varying number of objects?

4.1 Domains
For the first environment, we extend the taxi domain environment
[6] to relational multiagent settings. The goal is to transport passen-
gers from their current locations to their destinations. Passengers
are located at four different grid positions – R, G, B, and Y -— re-
quiring coordinated efforts from the taxis for pickup and drop-off,
with no two passengers having the same pickup or drop locations.
Additionally, the taxis cannot cross each other or occupy the same
location. Doing sowould cause crashes, terminating a huge negative
reward and incurring a heavy penalty.

For the second environment, we extend the office world domain
[15] to accommodate multiple agents. The agents are presented

1Link to code and supplementary text: https://starling.utdallas.edu/papers/MaRePReL

https://starling.utdallas.edu/papers/MaRePReL

Domain D-FOCI statements Operators Relevant Predicates

Multiagent Taxi

taxi-at(𝑇, 𝐿1),move(T, Dir) +1→ taxi-at(𝑇, 𝐿2)
taxi-at(𝑇, 𝐿),move(𝑇,𝐷𝑖𝑟) +1→ R
taxi-at(𝑇 1, 𝐿1), taxi-at(𝑇 2, 𝐿2),move(𝑇 1, 𝐷𝑖𝑟1),
move(𝑇 2, 𝐷𝑖𝑟2) +1→ R

pickup(P,T) :
taxi-at(𝑇 1, 𝐿1), at(𝑃, 𝐿), in-taxi(𝑃) +1→ in-taxi(𝑃)
in-taxi(𝑃)→R

drop(P,T) :
taxi-at(𝑇 1, 𝐿1), in-taxi(𝑃), dest(𝑃, 𝐿), at-dest(𝑃) +1→ at-dest(𝑃)
at-dest(𝑃)→R

pickup(P, T)

drop(P, T)

taxi-at(𝑇, 𝐿1) , taxi-at(𝑇 2, 𝐿2) ,
at(𝑃, 𝐿) , in-taxi(𝑃) ,

move(𝑇,𝐷𝑖𝑟) , move(𝑇 2, 𝐷𝑖𝑟2)

taxi-at(𝑇, 𝐿1) , taxi-at(𝑇 2, 𝐿2) ,
dest(𝑃, 𝐿) , in-taxi(𝑃) ,

move(𝑇,𝐷𝑖𝑟) , move(𝑇 2, 𝐷𝑖𝑟2)

Multiagent Office

agent-at(𝐴, 𝐿1),move(A, Dir) +1→ agent-at(𝐴, 𝐿2)
agent-at(𝐴, 𝐿1),move(A, Dir)→R

visitOrPickup(X,A) :
agent-at(𝐴, 𝐿1), at(𝑋, 𝐿),with-agent(𝐴,𝑋) +1→ with-agent(𝐴,𝑋)
with-agent(𝐴,𝑋)→R

deliver(X,A) :
agent-at(𝐴, 𝐿1),with-agent(𝐴,𝑋), office(𝐿),
delivered(𝑋) +1→ delivered
delivered(𝑋)→R

visitOrPickup(X, A)

deliver(X, A)

agent-at(𝐴, 𝐿1),move(A, Dir),
at(𝑋, 𝐿),with-agent(𝐴,𝑋)

agent-at(𝐴, 𝐿1),move(A, Dir),
with-agent(𝐴,𝑋), office(𝐿),

delivered(𝑋)

Multiagent Dungeon

player-at(𝑃, 𝐿1), orientation(𝑃),move(𝑃, 𝐷𝑖𝑟) +1→ player-at(𝑃, 𝐿2)
player-at(𝑃, 𝐿), orientation(𝑃),move(𝑃, 𝐷𝑖𝑟)→R

attackEnemy(P, E) :
player-at(𝑃, 𝐿1), enemy-at(𝐸, 𝐿2), player-health(𝑃),
player-defense(𝑃) +1→ player-health(𝑃)
player-health(𝑃)→𝑅
player-at(𝑃, 𝐿1), enemy-at(𝐸, 𝐿2),
enemy-health(𝐸) +1→ enemy-health(𝐸)
enemy-health(𝐸)→𝑅

getKeyInDoor(P,K) :
hasKey(𝑃,𝐾), player-at(𝑃, 𝐿1), enemy-at(𝐸, 𝐿2) +1→ hasKey(𝑃,𝐾)
hasKey(𝑃,𝐾), doorUnlocked(𝐾) +1→ doorUnlocked(𝐾)
doorUnlocked(𝐾)→R

attackEnemy(P, E)

getKeyInDoor(P, K)

player-at(𝑃, 𝐿1), orientation(𝑃),
move(𝑃, 𝐷𝑖𝑟), enemy-at(𝐸, 𝐿2),

player-health(𝑃), player-defense(𝑃),
enemy-health(𝐸)

player-at(𝑃, 𝐿1), orientation(𝑃),
move(𝑃, 𝐷𝑖𝑟), hasKey(𝑃,𝐾),

enemy-at(𝐸, 𝐿2),DoorUnlocked(𝐾)

Table 1: Example of D-FOCI statements for relational multiagent domains

with a set of tasks they need to complete together. A positive reward
is provided to the agents when they complete the tasks, but a bump
penalty is given to the agents when they move into the same cell.

For the third environment, we’ve handcrafted a dungeon grid
world inspired by Unity’s Dungeon Escape [18]. The agents must
defeat different enemies, collect the keys required to unlock the door,
and escape the dungeon. The enemies, if attacked, will target the
agents back. The agents become incapacitated and unable to take
action once their health reaches zero. The environment terminates
once all the keys are in the door, or all the agents are dead.

Table 1 lists the D-FOCI statements for the three environments
with additional environment details in the supplementary.

4.2 Baselines
We evaluate MaRePReL against several standard MARL algorithms,
including Deep Q-Networks with parameter sharing (DQN-PS),
Deep Q-Networks as independent learners (DQN-IL), and QMIX
[33]. In DQN, each agent maintains its decentralized state-action
value function, updatingQ-values based solely on local observations

and individual rewards. In contrast, QMIX utilizes a parameterized
mixing network to compute a joint Q-value, combining information
from all agents. However, it is essential to note that QMIX is not
included in the benchmark for the multi-agent dungeon environ-
ment due to a key limitation: QMIX requires a fixed number of
agents to function properly, which is not guaranteed in the dun-
geon environment as the number of agents change when an agent
dies.

Additionally, we introduce a new baseline called DQN-PE (DQN
with Plan Embeddings), inspired by HTN-MTRL [14]. In DQN-PE,
the observation for each agent is augmented with a vector embed-
ding of its current sub-plan. This approach leverages the same HTN
planner as MaRePReL and encodes the sub-plan string using a BERT
embedding model [34]. The string is divided into chunks, mean
pooled, and reduced to a R4 embedding. This baseline allows us
to assess whether providing agents with task-specific information
in the form of the agent’s sub-plan embeddings is sufficient, or
whether task hierarchies and state abstractions are required like in
MaRePReL. As far as we know, no relational multiagent baselines

Environment Task 1 Task 2 Task 3
Multiagent Taxi Transport 2 passengers Transport 3 passengers Transport 4 passengers
Multiagent Office Visiting A, B, C and D Pickup mail and coffee Deliver mail and coffee to office

Multiagent Dungeon Defeat 1 skeleton and escape Defeat 1 dragon and escape Defeat 1 skeleton, 1 dragon and escape
Table 2: Tasks to perform in different environments

(a) Taxi Task 1 (b) Taxi Task 2 (c) Taxi Task 3

(d) Office Task 1 (e) Office Task 2 (f) Office Task 3

(g) Dungeon Task 1 (h) Dungeon Task 2 (i) Dungeon Task 3

Figure 3: The success rates across different methodologies for the Taxi, Office World, and Dungeon domains

are readily available. One could design a relational multiagent base-
line by considering hierarchies as a special form of relations (in
the lines of the work inside RRL community [5, 43]), but extending
them to a multiagent scenario is non-trivial and outside the scope.

4.3 Results
We evaluate sample efficiency, transfer ability and generalization
capability of our method against the other baselines across the

different tasks (Table 2). The results, averaged over five trials, are
presented in Figure 3 (training from scratch), and 4 (training starting
with a previously learned policy), where the bold line represents the
mean and the shaded region illustrates the variance of the success
rate across trials after 3 million environment steps.

Sample Efficiency: In the taxi domain, MaRePReL, unlike DQN
and QMIX, was able to learn how to complete tasks 1, 2, and 3,

(a) Taxi Task 1 to Task 3 (b) Office Task 1 to Task 2 (c) Dungeon Task 2 to Task 3

Figure 4: The success rate in case of transferring from policy for one task to another across different methodologies for the
Taxi, Office World, and Dungeon Domains

whereas DQN-IL, DQN-PS, DQN-PE and QMIX have a near-zero
success rate even after training for 3 million steps (Figure 3 a-c). In
the Office World domain, DQN-PS learned an optimal policy for
Tasks 1 and 2 (Figure 3 d-e). This can be attributed to the static
nature of the goals in the environments. However, as the complexity
of the tasks increased, such as in Task 3 (Figure 3 f), none of the
baselines could perform while MaRePReL still was able to show
early success. In the Dungeon domain, MaRePReL demonstrates
robust performance, converging to optimal solutions for Task 1 and
2 while showing a steeper learning curve for Task 3. The baseline
of DQN-PS exhibits convergence for Task 1 after one million steps,
although notably slower compared to MaRePReL. However, DQN-
IL, DQN-PS, and DQN-PE struggled with learning Tasks 2 and 3,
showing a near-zero success rate in both cases (Figure 3 g-i). QMIX
can’t be used in the dungeon environment due to its changing
number of agents. Therefore, Q1 can be answered affirmatively.

Transfer: In the Office World domain, we transfer policies from
Task 1 (Visiting A, B, C, D) to Task 2 (Get Mail and Coffee), and
in the Dungeon domain, from Task 2 (Dungeon with 1 Dragon)
to Task 3 (Dungeon with 1 Dragon and 1 Skeleton). In the Office
World experiment, MaRePReL successfully adapted to the new task
and nearly achieved 100% success, whereas the baselines strug-
gled— QMIX, DQN-IL, and DQN-PE failed, and DQN-PE had a
low success rate (Figure 4b). In the Dungeon experiment, when
tasks shared common goals, transferring with MaRePReL facilitated
convergence, while neither QMIX nor any DQN baselines showed
success (Figure 4c). These results demonstrate the transfer abilities
of a relational model, a fact well-known within the relational RL
community. The key power of relational models (in our case, rela-
tional planner and relational abstract reasoner) lies in their ability
to achieve efficient transfer and effective generalization. Therefore
Q2 can be answered affirmatively.

Generalization: In this case, the policies are not randomly ini-
tialized; instead, the policies learned for tasks with fewer objects
are applied to the new task with more objects. For the taxi world
domain, a policy trained on the task of transporting two passen-
gers is applied to the task of transporting four passengers (Figure
4a). MaRePReL significantly improves sample efficiency, achieving
Task 3’s success rate in less than half a million steps, compared

to 3 million steps for the non-transferred policy. Similarly, one
can notice that MaRePReL generalizes to a task presenting an in-
creasing number of enemies to defeat in the Dungeon environment.
Other baselines do not demonstrate any initial success or show
any performance improvement. Therefore, Q3 can be answered
affirmatively

5 DISCUSSION AND FUTUREWORK
We demonstrated empirically that MaRePReL significantly outper-
forms traditional MARL approaches, including DQN (independent
learners or parameter sharing or with sub-plan embeddings) and
QMIX. Our results clearly show the effectiveness of combining a re-
lational planner with an agent-specific task distributor at the higher
level and deep RL at the lower level. Significant improvements can
be observed in both learning, transfer, and generalization.

Our framework has a few limitations. As the number of operators
and agents increases, the search space for the relational planner
grows exponentially, posing challenges for generalization, an im-
portant future direction. Our current formalism applies only to
problems featuring a fully observable state space, and extending
it to partially observable spaces necessitates integration with ef-
ficient (lifted) probabilistic inference. Moreover, the cooperation
shown between agents is loosely coupled as they work in parallel to
complete the tasks assigned by a centralized planner. It is possible
to extend our approach to tackle challenges in domains that de-
mand coordination among multiple agents [3, 9] by incorporating
a partial-order planner along with wait operators. This extension
would allow all agents to achieve a state that fulfills the precondi-
tions before performing the joint task. Finally, constructing a fully
differentiable system is an interesting direction for future research.

ACKNOWLEDGMENTS
NP, RS, and SN gratefully acknowledge the support of the ARO
award W911NF2010224. PT gratefully acknowledges the support
of ARO award W911NF2210251.

REFERENCES
[1] Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. 2024. Multi-Agent

Reinforcement Learning: Foundations and Modern Approaches. MIT Press, Boston.
https://www.marl-book.com

https://www.marl-book.com

[2] Sebastian Bitzer, Matthew Howard, and Sethu Vijayakumar. 2010. Using di-
mensionality reduction to exploit constraints in reinforcement learning. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, IEEE,
Taipei, Taiwan, 3219–3225.

[3] Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. 2020. Shared
Experience Actor-Critic for Multi-Agent Reinforcement Learning. In Ad-
vances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., Virtual, 10707–10717. https://proceedings.neurips.cc/paper/2020/file/
7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf

[4] Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Maurice Bruynooghe. 2006.
Multi-agent relational reinforcement learning: Explorations in multi-state coordi-
nation tasks. In Learning and Adaption in Multi-Agent Systems: First International
Workshop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected
Papers. Springer, LAMAS, Utrecht, The Netherlands, 192–206.

[5] Srijita Das, Sriraam Natarajan, Kaushik Roy, Ronald Parr, and Kristian Kersting.
2020. Fitted Q-Learning for Relational Domains. arXiv:2006.05595 [cs.LG]
https://arxiv.org/abs/2006.05595

[6] Thomas Dietterich. 1999. State Abstraction in MAXQHierarchical Reinforcement
Learning. In Advances in Neural Information Processing Systems, S. Solla, T. Leen,
and K. Müller (Eds.), Vol. 12. MIT Press, Denver. https://proceedings.neurips.cc/
paper_files/paper/1999/file/e5a4d6bf330f23a8707bb0d6001dfbe8-Paper.pdf

[7] Thomas G Dietterich. 1998. The MAXQ Method for Hierarchical Reinforcement
Learning.. In ICML, Vol. 98. ICML, Madison, Wisconsin, 118–126.

[8] Sašo Džeroski, Luc DeRaedt, and Kurt Driessens. 2001. Relational reinforcement
learning. Machine learning 43 (2001), 7–52.

[9] Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei
Sun, Anuj Mahajan, Jakob Foerster, and Shimon Whiteson. 2023. SMACv2: An
Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning. In
Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko,M. Hardt, and S. Levine (Eds.), Vol. 36. CurranAssociates, Inc., New
Orleans, 37567–37593. https://proceedings.neurips.cc/paper_files/paper/2023/
file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf

[10] Alberto Finzi and Thomas Lukasiewicz. 2004. Relational Markov Games. In Logics
in Artificial Intelligence, Jóse Júlio Alferes and João Leite (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 320–333.

[11] Lise Getoor and Ben Taskar. 2007. Introduction to statistical relational learning.
MIT press, Boston.

[12] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. 2006. Hierar-
chical Multi-Agent Reinforcement Learning. Autonomous Agents and Multi-Agent
Systems 13, 2 (sep 2006), 197–229. https://doi.org/10.1007/s10458-006-7035-4

[13] Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fior-
ino, Damien Pellier, and Ron Alford. 2020. HDDL: An extension to PDDL for
expressing hierarchical planning problems. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. AAAI, New York City, 9883–9891.

[14] Yuyong Hu and Hankz Hankui Zhuo. 2024. Multi-Task Reinforcement Learning
with Cost-based HTN Planning. In 2024 5th International Conference on Computer
Engineering and Application (ICCEA). IEEE, Hangzhou, China, 155–160. https:
//doi.org/10.1109/ICCEA62105.2024.10603549

[15] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. 2018.
Using Reward Machines for High-Level Task Specification and Decomposition
in Reinforcement Learning. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer
Dy and Andreas Krause (Eds.). PMLR, Stockholm, Sweden, 2107–2116. https:
//proceedings.mlr.press/v80/icarte18a.html

[16] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. 2020. Symbolic
plans as high-level instructions for reinforcement learning. In Proceedings of the
international conference on automated planning and scheduling, Vol. 30. ICAPS,
Online, 540–550.

[17] Shariq Iqbal, Robby Costales, and Fei Sha. 2022. ALMA: Hierarchical
Learning for Composite Multi-Agent Tasks. In Advances in Neural Infor-
mation Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., New Or-
leans, 7155–7166. https://proceedings.neurips.cc/paper_files/paper/2022/file/
2f27964513a28d034530bfdd117ea31d-Paper-Conference.pdf

[18] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar,
and Danny Lange. 2020. Unity: A General Platform for Intelligent Agents.
arXiv:1809.02627 [cs.LG] https://arxiv.org/abs/1809.02627

[19] Jung In Kim, Young Jae Lee, Jongkook Heo, Jinhyeok Park, Jaehoon Kim, Sae Rin
Lim, Jinyong Jeong, and Seoung Bum Kim. 2023. Sample-efficient multi-agent
reinforcement learning with masked reconstruction. PLOS ONE 18, 9 (09 2023),
1–14. https://doi.org/10.1371/journal.pone.0291545

[20] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, and
Prasad Tadepalli. 2021. Reprel: Integrating relational planning and reinforcement
learning for effective abstraction. In Proceedings of the International Conference on
Automated Planning and Scheduling, Vol. 31. ICAPS, Guangzhou, China, 533–541.

[21] Harsha Kokel, Sriraam Natarajan, Balaraman Ravindran, and Prasad Tadepalli.
2023. RePReL: a unified framework for integrating relational planning and rein-
forcement learning for effective abstraction in discrete and continuous domains.
Neural Computing and Applications 35, 23 (2023), 16877–16892.

[22] Jonas Kvarnström. 2011. Planning for loosely coupled agents using partial order
forward-chaining. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 21. ICAPS, Freiburg, Germany, 138–145.

[23] Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. 2022. Minimax-Optimal
Multi-Agent RL in Markov Games With a Generative Model. In Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., New
Orleans, 15353–15367. https://proceedings.neurips.cc/paper_files/paper/2022/
file/62b4fea131cfd5b7504eae356b75bbd8-Paper-Conference.pdf

[24] Guangxia Li, Gang Xiao, Junbo Zhang, Jia Liu, and Yulong Shen. 2022. Towards
relational multi-agent reinforcement learning via inductive logic programming.
In International Conference on Artificial Neural Networks. Springer, ICANN, Bristol,
UK, 99–110.

[25] Michael L. Littman. 1994. Markov games as a framework for multi-agent re-
inforcement learning. In Proceedings of the Eleventh International Conference
on International Conference on Machine Learning (New Brunswick, NJ, USA)
(ICML’94). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 157–163.

[26] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red
Hook, NY, USA, 6382–6393.

[27] Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt.
2024. From statistical relational to neurosymbolic artificial intelligence: A survey.
Artificial Intelligence 328 (2024), 104062. https://doi.org/10.1016/j.artint.2023.
104062

[28] David Martínez, Guillem Alenyà, and Carme Torras. 2017. Relational reinforce-
ment learning with guided demonstrations. Artificial Intelligence 247 (2017),
295–312. https://doi.org/10.1016/j.artint.2015.02.006 Special Issue on AI and
Robotics.

[29] Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan
Fern, and Angelo Restificar. 2005. Learning First-Order Probabilistic Models with
Combining Rules. In Proceedings of the 22nd International Conference on Machine
Learning (Bonn, Germany) (ICML ’05). Association for Computing Machinery,
New York, NY, USA, 609–616. https://doi.org/10.1145/1102351.1102428

[30] Dana S. Nau, Yue Cao, Amnon Lotem, and Hector Muñoz-Avila. 1999. SHOP:
Simple Hierarchical Ordered Planner. In International Joint Conference on Artificial
Intelligence. IJCAI, Stockholm, Sweden, 968–973. https://api.semanticscholar.
org/CorpusID:2329216

[31] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical reinforcement learning: A comprehensive survey. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1–35.

[32] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. 2016. Sta-
tistical relational artificial intelligence: Logic, probability, and computation. Syn-
thesis lectures on artificial intelligence and machine learning 10, 2 (2016), 1–189.

[33] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-
sation for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholm,
Sweden, 4295–4304. https://proceedings.mlr.press/v80/rashid18a.html

[34] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics,
Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[35] Silvana Roncagliolo and Prasad Tadepalli. 2004. Function approximation in
hierarchical relational reinforcement learning. In Proceedings of the ICML-2004
Workshop on Relational Reinforcement Learning. ICML, Banff, Alberta, 1–5.

[36] Satinder P Singh. 1992. Reinforcement learning with a hierarchy of abstract
models. In Proceedings of the tenth national conference on Artificial intelligence.
AAAI, San Jose, California, 202–207.

[37] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

[38] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[39] Prasad Tadepalli, Robert Givan, and Kurt Driessens. 2004. Relational reinforce-
ment learning: An overview. In Proceedings of the ICML, Vol. 4. ICML, Banff,
Alberta, 1–9.

[40] Guy Van den Broeck, Kristian Kersting, Sriraam Natarajan, and David Poole.
2021. An Introduction to Lifted Probabilistic Inference. MIT Press, Boston.

https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://arxiv.org/abs/2006.05595
https://arxiv.org/abs/2006.05595
https://proceedings.neurips.cc/paper_files/paper/1999/file/e5a4d6bf330f23a8707bb0d6001dfbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/e5a4d6bf330f23a8707bb0d6001dfbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1007/s10458-006-7035-4
https://doi.org/10.1109/ICCEA62105.2024.10603549
https://doi.org/10.1109/ICCEA62105.2024.10603549
https://proceedings.mlr.press/v80/icarte18a.html
https://proceedings.mlr.press/v80/icarte18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f27964513a28d034530bfdd117ea31d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f27964513a28d034530bfdd117ea31d-Paper-Conference.pdf
https://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1809.02627
https://doi.org/10.1371/journal.pone.0291545
https://proceedings.neurips.cc/paper_files/paper/2022/file/62b4fea131cfd5b7504eae356b75bbd8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/62b4fea131cfd5b7504eae356b75bbd8-Paper-Conference.pdf
https://doi.org/10.1016/j.artint.2023.104062
https://doi.org/10.1016/j.artint.2023.104062
https://doi.org/10.1016/j.artint.2015.02.006
https://doi.org/10.1145/1102351.1102428
https://api.semanticscholar.org/CorpusID:2329216
https://api.semanticscholar.org/CorpusID:2329216
https://proceedings.mlr.press/v80/rashid18a.html
https://doi.org/10.18653/v1/D19-1410

[41] M. van Otterlo. 2005. A Survey of Reinforcement Learning in Relational Domains.
Number 05-31 in CTIT Technical Report Series. Centre for Telematics and Infor-
mation Technology (CTIT), Netherlands. Imported from HMI.

[42] Martijn van Otterlo. 2012. Solving relational and first-order logical markov
decision processes: A survey. In Reinforcement learning: State-of-the-art. Springer,
Berlin, Heidelberg, 253–292.

[43] Chenggang Wang, Saket Joshi, and Roni Khardon. 2008. First order decision
diagrams for relational MDPs. Journal of Artificial Intelligence Research 31 (2008),
431–472.

[44] Chenggang Wang and Roni Khardon. 2010. Relational partially observable MDPs.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24. AAAI
Press, Atlanta, Georgia, USA, 1153–1158.

[45] Daniel S Weld. 1994. An introduction to least commitment planning. AI magazine
15, 4 (1994), 27–27.

[46] Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, and Guoliang Fan. 2023. HAVEN:
Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coor-
dination Mechanism. Proceedings of the AAAI Conference on Artificial Intelligence
37, 10 (Jun. 2023), 11735–11743. https://doi.org/10.1609/aaai.v37i10.26386

[47] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. 2020. Hierarchical Cooperative
Multi-Agent Reinforcement Learning with Skill Discovery. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems
(Auckland, NewZealand) (AAMAS ’20). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 1566–1574.

[48] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
reinforcement learning and control 325 (2021), 321–384.

https://doi.org/10.1609/aaai.v37i10.26386

	Abstract
	1 Introduction
	2 Related Work
	3 Multiagent Relational Planning and Reinforcement Learning (MaRePReL)
	3.1 Problem Formulation
	3.2 Relational Planner
	3.3 Task-specific Abstraction
	3.4 MaRePReL Algorithm

	4 Experimental Results
	4.1 Domains
	4.2 Baselines
	4.3 Results

	5 Discussion and Future Work
	Acknowledgments
	References

