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Abstract. Extracorporeal Membrane Oxygenation (ECMO) is a method
for supporting patients with severe cardiac or respiratory failure. How-
ever, pediatric ECMO patients are at a higher risk of severe neurological
injury (NI). Understanding underlying causal mechanisms is critical for
clinical decision-making. To this effect, we explore using Large Language
Models (LLMs) for the construction of Causal Bayesian networks. While
LLMs can reproduce causal relationships reflected in their training data,
they may also generate spurious associations. We address this by re-
fining the LLM-generated BN using data from 71 patients and domain
constraints elicited from our experts. Our empirical evaluation shows
that our method can construct causal diagrams by combining domain
knowledge with empirical patterns.
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1 Introduction

Understanding the causal relationships between adverse health outcomes and
their risk factors is crucial for developing effective preventative measures and
targeted interventions. One important formalism for causal modeling is Causal
Bayesian Networks (CBN [9]). The structure of CBNs is an acyclic graph consist-
ing of a set of vertices, one for each variable, and a set of directed edges between
pairs of variables, each edge denoting a causal relationship. We consider the
task of constructing these causal graphs to model pediatric patients on extracor-
poreal membrane oxygenation (ECMO [6]). ECMO is a method of supporting
critically ill patients with cardiac or pulmonary failure by using a heart-lung
bypass until the heart or lungs recover function. For patients on ECMO, we aim
to model the relationship between the presence of neurologic injuries, such as
strokes, intracranial bleeding, and brain death, and their relevant risk factors.

Causal graph construction methods can be categorized into expert knowledge-
based and data-driven methods. Expert knowledge-based methods construct
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causal graphs by eliciting the causal relationship from domain experts or from
clinical guidelines such as the Quick Medical Reference (QMR [13]). This ap-
proach falls short when modeling exceedingly complex and less well-understood
domains such as pediatric critical care. In contrast, data-driven methods aim to
automatically construct these graphs based on patterns mined from empirical
data [16]. Since causality cannot be established purely from observation, these
methods make assumptions about the underlying causal relationships. For in-
stance, data-driven methods commonly assume causal sufficiency, meaning that
the causal relations between the set of variables under consideration are not
mediated by an external or confounding factor. While this might be addressed
by naively expanding the set of variables, the paucity of medical data limits the
number of variables that could be considered. Data-driven causal discovery is
further complicated by the temporal nature of the data, missingness due to data
collection issues, and the naturally cyclic nature of human physiology [3]. Thus,
this domain poses a number of challenges to causal learning methods.

We address these challenges in causal graph construction for critical care
pediatric patients by taking a hybrid approach, combining data-driven methods
with knowledge from two sources: critical care experts and a Large Language
Model (LLM) trained on a large corpus.

2 Refinement based causal learning for pediatric ECMO

We focus on the task of constructing the structure of a CBN, i.e., a causal graph,
to model the less well-understood and complex domain of pediatric patients on
ECMO. This graph would help improve the understanding of the relationships
between NI and its risk factors. We aim to construct the causal graph by com-
bining domain knowledge with a small data set from patients on ECMO.

In particular, using the theory refinement framework [8], we construct BN
graphs by eliciting an initial graph from an expert and iteratively adding, re-
moving, or reversing directed edges between variables to maximize an empirical
score. This method is based on hill-climbing search, approximately solving an
exceedingly complex search problem by finding locally optimal solutions. A key
issue is that the initial structure will greatly affect the efficacy of the final model.
Moreover, without additional assumptions, it cannot always distinguish purely
associational relationships from causal ones in the data.

We adapt the BN refinement procedure to causally model pediatric patients
in the critical care setting by exploiting domain knowledge. First, using expert
knowledge, we collect a set of Boolean variables summarizing clinically relevant
information about each patient’s ECMO run. Based on these variables, we enu-
merate all the causal relations that would be clinically impossible. For instance,
NI cannot cause hypertension in the first 24 hours of ECMO. Second, we use a
pretrained LLM as a source of approximate knowledge. These are deep genera-
tive models that have demonstrated impressive capabilities across a wide range
of natural language processing tasks [18]. Since these models have been trained
on a vast corpus that includes a large amount of medical literature, they offer
a valuable source of approximate domain knowledge [7]. However, since these
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are correlation-based models, they cannot distinguish between genuinely causal
and purely associational relations [17]. As a result, their generated text might
contain a combination of causal and non-causal statements. We use this text to
construct an initial graph that would be edited through theory refinement.

To summarize, we consider knowledge in the form of expert selected vari-
ables, constraints on their causal relationships based on temporal order, and an
initial hypothesis about the causal graph based on approximate domain knowl-
edge from an LLM. Using this knowledge, we construct a causal graph using the
data driven theory refinement procedure to eliminate non-causal edges from the
LLM-generated causal graph. Concretely, our method is a three-phase proce-
dure inspired by the Greedy Equivalence Search algorithm [2]. We first populate
a causal graph by prompting an LLM, and then refine this graph by eliminating
edges unsupported by the data via a refinement procedure limited to deletion
operations. Finally, we discover new edges by performing full, unrestricted re-
finement on the resulting graph4.

3 Empirical evaluation

Setup. We evaluate our method using a small data set obtained from the Chil-
dren’s Medical Center of Dallas. It consists of time-series data from the ECMO
runs of 71 pediatric patients (ages 0–19 years, with an average age of 4.32 years).
Our domain experts, Drs. Raman, Shah, and Sanford defined the causal mod-
eling domain in terms of eight Boolean variables. This set includes a variable
indicating whether the patient suffered a neurological injury (NI) based on tests
performed at the end of the ECMO run, and seven variables indicating the pres-
ence of seven risk factors of NI, based on existing clinical research [12,5,15]: High
VIS, Hypotension, Hypertension, Low Platelet, High Lactate, Low pH, and Rel-
ative pCO2. The presence of these risk factors early in the ECMO run has been
associated with adverse outcomes. As a result, we define these variables based on
the data from the first 24 hours post-cannulation on ECMO. We computed the
values for each risk factor variable for each patient by testing if its corresponding
event (e.g., Low pH) occurs at least once within the patient’s data. Additionally,
we compute Relative pCO2 as a large change in the pCO2 value after initiating
EMCO relative to the value one hour prior to cannulation[11].

We used 4 pre-trained LLMs as approximate knowledge sources: GPT-4o,
DeepSeek, LLaMA, and Gemini. We compare the LLM-generated graphs and
the graphs obtained from our refinement procedure to 3 data-driven baselines:
search-and-score (SS) [4], PC [14], and FCI [14]. For each automatically con-
structed graph, we quantify the difference from an expert-constructed graph
using 3 metrics: the number of Spurious Edges (SE), the Structural Hamming
Distance (SHD [1]), and the Structural Intervention Distance (SID[10]). SHD
is the number of edge additions, deletions, and reversals required to transform
each graph into the expert graph, while SID quantifies the divergence in causal
conclusions derived from the graphs.
4 Supplementary material: https://github.com/saurabhmathur96/LLM-guided-CBNs
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Fig. 1. Causal graphs constructed by pooling output of all the LLMs, after deletion-
only refinement, after full-refinement, and the expert-constructed graph (left to right)

Method SE SHD SID
SS 4.3± 2 9.7± 2 17.9± 5
PC 0.8± 0.9 8.1± 1.4 16.5± 4
FCI 0.1± 0.3 8± 0.4 14.9± 0.3

LLM Union 9 9 5
+ Refine (del.) 3± 0.9 5.4± 1.1 5.1± 1.4
+ Refine (full) 4.8± 1.1 6.6± 1.3 6.2± 3.5

Table 1. Data-driven vs LLM-based methods.

Results. Tables 1 and 2
present quantitative results of
the evaluation, aggregated over
10 bootstrap samples. (1) LLMs
construct graphs that are seman-
tically closer to the expert graph
than data-driven graphs; they,
however, contain more spurious
edges. (2) Deletion-only refine-
ment correctly eliminates spurious edges; it also eliminates some weak causal
edges. (3) Full refinement yields graphs with more spurious edges; these edges are
supported by empirical data and a partial causal structure, making them more
plausible than the LLM-generated ones. Our domain experts’ visual inspection of
these graphs validated the plausibility of these edges. For instance, consider the
graphs in Figure 1. The LLM’s graph misses the edge HighVIS → Hypotension;
the full refinement procedure correctly recovers that edge from data and adds it
to the graph. Additionally, our method added the edge Relative pCO2 → NI; in
retrospect, the experts agree that this may be supported by the literature.

Limitations and Future work. We considered the problem of modeling
neurological injuries in the pediatric population on ECMO. We take the first step
towards tackling this hard problem by exploiting exact and approximate domain
knowledge to augment sparse data to construct a causal graph. There are three
main directions for future work. Firstly, this study is based on data from only
71 patients from a single center, of which 23.9 % suffered a neurological injury.
Future work should consider larger data sets from multiple centers. Secondly,
the 8 variables considered in the study were chosen based on the latest clinical
research. However, this might not strictly satisfy causal sufficiency since the
domain is still being actively researched. Future work should include additional
factors such as ECMO pump speed and medical conditions that might mediate
the causal relationships between these variables. Finally, future work should
extend this method to causal relations across time.
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LLM LLM output Refine (del.) Refine (full)
SE SHD SE SHD SE SHD

GPT 6 6 2.6± 0.5 4.9± 0.7 4.7± 0.9 6.5± 1.1
Gemini 6 8 1± 0.9 7.1± 1.4 3.2± 1.3 8.7± 2.1
LLaMA 4 5 0.1± 0.3 6.1± 0.8 2.7± 1.0 8.1± 1.2
DeepSeek 7 7 1.6± 0.7 3.1± 0.9 4.2± 1.4 5.9± 1.7
LLM Union 9 9 3± 0.9 5.4± 1.1 4.8± 1.1 6.6± 1.3

Table 2. Effect of CBN refinement on LLM-elicited causal graphs.
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