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1 Appendix
1.1 Derivation

Assume tree (¢;) splits at node n on variable a. As de-
scribed in the paper, for monotonic influence a Qj Y, We ex-
pect By, [n.] < Ey, [ng], where ng (resp. ng) is the set of
all examples following the left (resp. right) sub-tree at n.
This expectation can be characterized using current tree v,

as:
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Each tree, in turn, is represented as sum of its leaves (£):
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where, I(z € £) represents whether example x is captured
in leaf £

In KiGB, we use expectation as a constraint and introduce
(n to measure the violation of this constraints at each node.
Cn = (Ey,[n] — Ey, [nr] — ). We modify the standard
objective of squared-error loss by adding a squared-penalty
for violation of this constraint.
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With this objective, value of each parameter/leaf node can
be derived taking partial derivation w.r.t that parameter.
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Over the next few equations, we take the derivative and then
equate it to zero.
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Here, we use the derivative of ReLU. For, f(z) =
max(x,0) , the derivative is defined as:

1, ifxz>0
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Also,
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Plugging this in the previous equation:
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Here, YV I(z; € j) is the number of samples at leaf
node j, we use the notation |j| for it.
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ZZEHL I(x; € j) is true only if the j € n; and when it is
true, it will be equivalent to |j].
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Now, equating the derivation with zero will give us the fol-
lowing equation for leaf values:
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Below is the same equation mentioned in the paper, repro-
duced here for convenience:
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penalty for advice violation

1.2 Overfitting by strict monotonicity

When a model is fitted w.r.t data under strict monotonicity
constraints, as done by LMC, it may overfit the data some-
time. We illustrate this with an example in this section. Con-
sider a noisy data as shown in figure 1a, with feature a on the
horizontal axis, b on the vertical axis, and different colors
represent different regression values of the target y. Assume
that some expert provided the monotonic influence advice —

@y for this data.

The noisy data clearly violates this constraint in region
R1 & R2. In the scenario where the advice is significantly
more important than the noisy data, it might seem rea-
sonable to use the strict monotonic boosting provided by
LightGBM (LMC). However, as seen in figure 1b the LMC
overfits the training data by splitting horizontally in the re-
gion R1 & R2. Standard boosting method (LGBM) (figure
1c), on the other hand use natural splits but has no way of
correcting the noise. Our LKiGB approach (figure 1d) uses
the monotonic influence information from the expert to pro-
vide correction and learn a monotonic function.
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Figure 1: Illustration of the overfitting by LMC. As can be seen, LGBM, without any monotonic influence statements, learned
an incorrect model due to the presence of noisy data. With LMC, the model learns a monotonic function but it overfits the
training data. LKiGB provides a correction to the LGBM and generalizes to a better model.



