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Abstract—Multimodal fusion is important for building intel-
ligent systems that exploit patterns across diverse data sources
for improved decision-making. However, the reliability and ro-
bustness of these systems in safety-critical domains are often
compromised by the inherent noise and incompleteness of data.
Probabilistic Circuits (PCs) have recently emerged as a promising
approach for late (or decision) fusion. Their strength lies in
being both expressive and capable of inferring source credibility
due to their ability to tractably perform exact probabilistic
inference. However, their ability to handle missing data and their
reliability in practical scenarios remains underexplored. This
work investigates the robustness of PCs as fusion functions in
scenarios with missing and noisy data; particularly by examining
their impact on the calibration and reliability of the resulting
classifiers. Our findings show that PCs not only enable the
modeling of complex correlations across modalities but also lead
to calibrated and reliable classifiers, highlighting their potential
as a robust fusion mechanism in multimodal systems.

Index Terms—Multi-modal fusion, reliability, robustness, prob-
abilistic circuits

I. INTRODUCTION

Humans effectively reason about their surroundings by
utilizing complementary information from various sensory
inputs. Integrating such a multimodal reasoning capability
into intelligent systems has become increasingly important
for enhancing data-driven decision-making, as many domains
naturally offer data encoded as different modalities. For ex-
ample, in the development of autonomous vehicles [1], the
fusion of visual data from cameras placed at different angles
with distance measurements from LiDAR sensors can provide
a more comprehensive representation of the environment,
enabling the system to make better-informed decisions. This
has led to the rise of multimodal fusion as a significant subfield
within artificial intelligence [2].

When deploying multimodal systems, ensuring their reli-
ability and trustworthiness is crucial, especially in safety-
critical domains. However, real-world data is often noisy and
incomplete, and different modalities can vary significantly in
their quality and reliability. These challenges are prevalent
in many real-world domains such as sensor fusion [3, 4],
medical diagnosis [5], and financial analysis [6]. Consequently,
several studies have explored concepts such as reliability and
credibility [7, 8] within the context of late multimodal fusion,
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where predictions from individual modalities are combined
using functions like weighted averages [8], discounting factors
[9, 10], and Bayesian Networks [11]. However, these models
often face challenges in adequately balancing the simplicity
required to integrate notions of credibility and the complexity
needed to intricate relationships between modalities.
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Fig. 1: Mean Expected Calibration Error achieved by late
fusion methods on the test split of the Audiovisual MNIST
(AVMNIST) dataset [12], when presented when complete data
(in red) and when 50% of the modalities are missing (in grey).
Using a Probabilistic Circuit (PC) as the fusion function helps
achieve better calibrated and hence more reliable classifiers.

Recent work [13] proposes using tractable probabilistic
models like Probabilistic Circuits (PCs [14]) as fusion func-
tions, offering a promising approach for integrating unimodal
predictions. PCs can capture complex correlations while en-
abling the inference of theoretically grounded notions of
credibility. Although these models provide a probabilistic
framework for fusion and can handle missing data through
marginalization, there is a lack of comprehensive analysis
regarding their robustness and reliability.

This study addresses this gap by examining the performance
of late/decision fusion approaches in scenarios with missing
and noisy data, reflecting real-world conditions. We assess the
reliability of these approaches by evaluating the calibration
of the resulting classifiers and their robustness to missing
and noisy data. Figure 1 shows a comparison of the mean



calibration error achieved by common late/decision fusion
approaches and that using a PC in the presence of both
complete and missing data. Our findings indicate that using
tractable probabilistic models as fusion functions not only
facilitates modeling complex correlations and inferring the
credibility of source domains but also leads to calibrated and
reliable classifiers that are robust to missing and noisy data.

The rest of this paper is structured as follows. First, we
provide background on multimodal fusion in safety-critical
domains, including the challenges of credibility and data miss-
ingness. We then formally introduce our research questions.
Following this, we detail the experimental setup employed to
answer these questions and present the results. Finally, we
conclude by summarizing our key findings and opportunities
for future work.

II. BACKGROUND AND RELATED WORK
A. Multimodal fusion in safety-critical domains

Safety-critical systems, such as patient monitoring systems,
need to combine information from multiple heterogeneous
sources. Multimodal fusion [2, 15] offers a promising approach
for handling such data from diverse sources. For effective
deployment, these multimodal fusion systems need to account
for the credibility of information from each source [13, 16]
while being robust to missing data [17, 18]. For multi-
modal discriminative learning three three categories of fusion
exist: early (signal), intermediate (feature), and late (decision)
fusion.

a) Early/Signal Fusion: Early fusion approaches inte-
grate raw data from various sources at the input level, often
through aggregation operations, such as pointwise minimum,
maximum, and average [2]. Deep learning-based approaches
perform early fusion by learning joint feature representa-
tions [19]. However, these approaches are unable to reason
about the information from each source separately [20], po-
tentially hindering the model’s ability to assess source-specific
credibility.

b) Intermediate/Feature Fusion: Intermediate fusion ap-
proaches first extract features from each data source’s raw
data. These features are then combined to create a higher-level
representation [21]-[23] that can be fed into a classifier. Unlike
early fusion, intermediate fusion offers more flexibility for
considering each modality’s unique characteristics. While this
allows intermediate fusion approaches to robustly deal with
missing data [22], the combined nature of the intermediate
representation still makes it difficult to infer credibility.

c) Late/Decision Fusion: Late fusion, on the other hand,
operates by merging the independent predictions from uni-
modal classifiers at a later stage in the process. This integration
is done through combination functions [24, 25]. Common
strategies include weighted mean [26] and noisy-OR-based
combination functions [27]. Recently, tractable probabilistic
models have also been employed as efficient combination
functions for late fusion. The strength of late fusion lies in
its explainability and its capacity to preserve the autonomy
of each data source, thereby facilitating a more granular

assessment of source credibility. Thus, we will focus on late
fusion in this work and elaborate on the common approaches
in detail below.

B. Late/decision fusion and Credibility

In this section, we describe four late fusion approaches and
their ability to represent source-specific credibility. We use X
to denote a variable, x to denote a value, X to denote a set of
variables, and « to denote a set of values corresponding to the
set of variables. So, we use X; to denote a modality, which is a
set of variables, and x; to denote a value of that modality. We
consider late fusion given m modalities and a discrete target
variable Y. Each modality ¢ = 1,...,m is encoded using a
unimodal model representing the conditional probability over
the target variable given that modality, P;(Y =y | X; = x;).

1) Weighted Mean: Weighted Mean combination rule mod-
els the fused predictive probability as an explicitly weighted
combination of the predictions of unimodal models. This
representation allows the modality-specific credibility to be
inferred by inspecting the weights.

P(Y:y|X1:$1,,Xm:.’Em)

:Zwipi(yzy|Xi:$i) W
i=1

where each w; € [0,1] is the weight for modality ¢ such that
s wi =1

2) Noisy-OR: The Noisy-OR combination function com-
bines multiple unimodal predictions by assuming causal in-
dependence of the influence of each modality on a boolean
target variable. It models the fused predictive probability of
the target being active as the complement of the product of
the unimodal probabilities of the target being inactive.

P(Y:1\X1::c177Xm::cm)
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3) Multilayered Perceptrons: Weighted mean and Noisy-
OR combination functions make restrictive assumptions about
the relationship between the predictions of the unimodal mod-
els and the fused predictive distribution over the target, namely,
linear dependence and independence of causal influence re-
spectively. In cases where the validity of such assumptions
is not clear apriori, more expressive combination functions
like Multilayer perceptions (MLPs) might be used [28, 29].
Formally, given an MLP fyy p, the fused predictive probability
over the target is given by the following expression:

P(Y:y|X1::L'1,
:fMLP(p1:~~'7pm)

y X = wm)

3)

where p; = P(Y =y | X; = x;) foreach i = 1,...,m.
While MLPs can approximate arbitrarily complex functions
[30, 31], MLP-based combination functions lack a reliable way
to quantify modality-specific credibilities.



4) Probabilistic Circuits: Probabilistic circuits (PCs [14])
are a class of probabilistic models that represent the joint
distribution over variables using a computational graph. This
directed acyclic graph, composed of three types of nodes,
sum, product, and leaf nodes, defines the multivariate joint
distribution in terms of compositions of functions of simpler
distributions. The internal nodes, sum and product, represent
the mixture and factorization, respectively, of their input
distributions. The leaf nodes represent simple univariate dis-
tributions over input variables. Formally, a PC M is defined
as the tuple (G, 0) where G is the computational graph and 6
is the set of parameters of the sum and leaf nodes. The joint
probability distribution represented by the PC is given by the
following expression:

> ceeh(n) WePe(X =x) n € Sum
Pn(X = X) = HcECh(n) PC(XSC(C) = XSC(C)) n € Product
Un(X =x) n € Leaf

where ch(n) is the set of child nodes of a node n, w, is edge
weight corresponding to the child node ¢ of a sum node, sc(n)
is the scope of a node n (i.e., the set of variables over which
it is defined) and ¢,, is the univariate probability distribution
function corresponding to a leaf node n.

A key advantage of PCs is their ability to perform exact
probabilistic inference in time polynomial in the computational
graph size. Additionally, the computational graph structure
allows PCs to exploit the efficiency of deep learning while
maintaining their probabilistic semantics [32].

PC-based late-fusion approaches [33] use a PC to model the
joint distribution over the target variable and the predictions
of the unimodal models. The fused predictive distribution is
defined as the conditional distribution over the target variable
given the unimodal predictions. This predictive probability in
PC-based combination functions can be computed efficiently
and exactly using conditional probability inference on the PC.

Tractable computation of conditional probability queries
requires the PC to satisfy two properties — smoothness and
decomposability. A PC is said to be smooth if, for each sum
node, all children are defined over the same set of variables.
It is said to be decomposable if, for each product node, all
children are defined over disjoint sets of variables. Smooth
and decomposable PCs are also called sum-product networks
(SPNs [34]). The predictive probability in a late multimodal
fusion model with the combination function modeled by an
SPN M is given by the following expression:

P(Y:y|X1:$1,,Xm:IEm)
:PM(Y:yvplzplaapm:pm) (4)
PM(P1:p17"'7Pm:pm)

where p; = P;(Y =y | X; =x;) foreachi=1,...,m.

C. Data missingness in credibility-aware multimodal fusion

Missing data poses a significant challenge across various
fields, including safety-critical domains such as healthcare.

Factors contributing to missingness can vary. In healthcare,
demographic information might be readily available, but ob-
taining patient test results can be hindered by test invasiveness,
privacy concerns, and cost. Similarly, in robot navigation and
autonomous vehicles, certain sensors might be faulty or non-
functional.

Three primary strategies to address missing data include
— listwise deletion, imputation, and marginalization. Listwise
deletion [35], a common approach during training, removes
any data points containing missing values. While popular, this
method can lead to substantial data loss and introduce bias if
missingness is not random [36]. Additionally, listwise deletion
is impractical for inference, as it leaves the system unable to
make predictions on a potentially large number of data points
with missing values.

In contrast, imputation replaces missing values with es-
timates [37]-[39]. While effective when the missingness
process is understood, naive imputation [40] can introduce
significant bias into the training data. Furthermore, imputing
a single most likely value for uncertain data points ignores
information about other possible values. Some intermediate
fusion approaches such as Cross Partial Multi-View Networks
(CPM-Nets) [22] avoid explicit data imputation by imposing
structure on the latent representation to allow inference without
complete data.

Marginalization, on the other hand, addresses missingness
through a joint probabilistic model. This method involves
aggregating the predictions of a model across all possible
values of the missing feature, weighted by the probability of
each value. This method respects the inherent uncertainty of
missing data and is a more grounded way of dealing with
missing data.

III. EXPERIMENTAL INVESTIGATION

This study empirically investigates the performance of var-
ious late/decision fusion methodologies, particularly their ro-
bustness and reliability in real-world scenarios often character-
ized by noisy and incomplete data. In multimodal fusion, these
issues manifest as noise within individual modalities and the
absence of certain modalities. We train late fusion approaches
on complete data and study their robustness and reliability
when presented with missing, incomplete, or absent data.
Overall, we aim to answer the following research questions
experimentally

(Q1) How robust is the performance of late fusion
approaches when faced with noisy and incomplete
data?

(Q2) How reliable are the predictions made by late fusion
methods? Specifically, do they yield well-calibrated
predictions under missing data conditions?

We first elaborate on the methodology adopted for evaluat-
ing the above questions in this section and discuss the results
in the next section.
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Fig. 2: Robustness Analysis: Mean test performance of late fusion approaches on the AVMNIST dataset when presented
with complete data (blue), noisy data (orange), and with 50% modalities missing (green), in terms of Precision (left), Recall
(middle) and F1 Score (right). Error bars denote standard deviation across 3 independent trials.

A. Setup

For our experimental evaluation, we utilize the Audiovisual-
MNIST (avMNIST) [12] benchmark dataset, which comprises
two modalities: visual and auditory. The visual modality
consists of 28 x 28 pixel images depicting handwritten digits
from O to 9, while the auditory modality is represented by
112 x 112 spectrograms corresponding to each digit’s sound.
The dataset is divided into 55,000 training examples, 5,000
validation examples, and 10,000 test examples.

We implement and compare four late (decision) fusion
approaches: a Multilayer Perceptron (MLP), Weighted Mean,
Noisy-Or, and a Probabilistic Circuit (PC), following the
architecture and hyperparameter settings detailed in [13]. We
investigate the robustness of the above late fusion approaches
during the test phase under two primary conditions: missing
data and noisy input data, the details of which we elaborate
on below:

B. Evaluating Robustness

1) Missing Data: To evaluate the resilience of the fusion
methods to incomplete data, we mask out the information
from one of the modalities by multiplying it with a zero
vector. Since the AVMNIST dataset has only two modalities,
the resulting test data distribution has lost information from
50% of the input modalities. For the Probabilistic Circuit
(PC) fusion function M, we handle missing data through
marginalization, utilizing its tractability. Let k& denote the
index of the missing modality. The final prediction in the
presence of missing data is obtained as follows:

PY =y |X_y)=PulY =y|Py)

o Pm(Y =y, Py = p_p, P. = pi)

2y o, PMY =y, Py =p_y, P = pi)
where X _j represents the observed modalities and P_y
denotes the predictions made by the unimodal models on each

of the observed modalities. Marginalization over the missing
modality X, can be efficiently performed in linear time for

a smooth and decomposable PC by setting the corresponding
leaf variables to 1 and conducting a bottom-up evaluation of
the PC [14].

2) Noisy Data: To assess the robustness of the fusion
methods in the presence of noise, we generate a noisy version
of the test dataset by introducing noise into both modalities.

We create a noisy data set by transforming each data point
(1, &m),y) € D, to ((&s,...,%m),y). We do so by
adding noise to each x; using the following equation:

Z; = ax; + (1 — a)n,,

where n; ~ U(X™1 X M%) js a noise vector sampled from a
uniform distribution over the range of the random variable X,
and « € [0, 1] is a parameter that controls the noise level. By
varying o, we can simulate different levels of noise in the data
and evaluate the impact on the fusion method’s performance.

C. Evaluating Reliability

Reliability in multimodal fusion systems is closely linked
to the calibration of predictive outcomes — a concept that
ensures that the predicted probabilities of an outcome align
closely with its actual occurrence rate [41]. Calibration is
crucial not only for the system’s efficacy in practical decision-
making but also for its interpretability and the trust users
place in it [42]. In a scenario where a model predicts a series
of events to occur with a confidence level of 0.6, a well-
calibrated model would see these events actually happening
approximately 60 out of 100 times. Formally, this state of
perfect calibration is described as:

P(fg:ym:p):prG[O,l], (5)

where g, p, and y represent the predicted label, the predicted
probability, and the actual label, respectively.

Reliability Diagrams are graphical representations that offer
an intuitive understanding of a model’s calibration [43, 44].
Reliability diagrams plot the model’s predicted probabilities
against the empirical probability of the predicted outcomes.
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Fig. 4: Calibration Analysis: Reliability Diagrams illustrating the calibration of the four late fusion methods under setting
where 50% of modalities are missing. Each subplot displays the alignment of predicted confidence with actual model accuracy.
Blue bars represent accuracy, while the red line marks the gap between confidence and observed accuracy within each bin.

A model demonstrating perfect calibration will result in a
diagram where the plot lies on the diagonal line, representing
a balance between confidence and actual correctness.

For a more precise evaluation of calibration, we employ the
Expected Calibration Error (ECE) [45], which measures the
average calibration gap across the model’s predictions:

E[p( =Y |P=p) 0. (©)

The ECE metric is calculated by dividing the range of pre-

dicted probabilities into M distinct bins Bi,..., By, and it
is computed as follows:
M |B,|
ECE = = B;) — conf(B;)], 7
; - lace(B:) — conf(B:)| (M)

where |B;| indicates the number of predictions in the i-th bin,
acc(B;) is the accuracy of predictions within that bin, and
conf(B;) is the mean predicted confidence of the bin. This
measure provides an average sense of how much the model’s
confidence deviates from ideal calibration.

IV. RESULTS

(Q1) How robust are late fusion approaches when faced
with noisy and incomplete data?

Figure 2 visualizes the mean test performance of each
approach when presented with complete data (blue), noisy
data (orange), and with 50% modalities missing (green),
considering metrics such as Precision (left), Recall (middle),
and F1 Score (right). As expected, all methods experience per-
formance degradation with noise or missing data. However, the
PC-based fusion exhibits the smallest decrease in performance
across both settings, suggesting greater robustness.

A second aspect of robustness is a classifier’s ability to
appropriately adjust confidence in its predictions in response
to noise or missing information. The introduction of noise
can lead to an out-of-distribution dataset, where a robust and
reliable classifier should exhibit both minimal performance
degradation and reduced prediction confidence to reflect in-
creased uncertainty [46]. Similarly, the absence of a modality
should naturally increase the model’s predictive uncertainty,
as the “essence of information is to remove uncertainty” [47].
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Fig. 6: Confidence Histograms of Late Fusion Approaches when 50% of modalities are missing: Each subplot depicts
the distribution of test samples across confidence levels, providing a visual breakdown of how many samples fall into each
confidence interval. The grey lines denote the average accuracy and confidence.

Therefore, we expect the model’s confidence distribution to
shift toward the lower end of the spectrum in such situations.

To ascertain whether this theoretical expectation is met
in practice, we analyzed the distribution over the maximum
prediction probabilities across different late fusion algorithms.
As depicted in Figure 3, all approaches tend to produce
predictions with diminished confidence when modalities are
missing. This effect is more pronounced in the case of the
PC, Weighted Mean, and Noisy-Or as compared to MLP.
However, with noisy data, the MLP and Noisy-Or methods
seem to maintain a higher level of confidence, potentially
failing to recognize the out-of-distribution nature of the data.
On the other hand, the PC exhibits the lowest peak confidence
among all approaches when presented with both noisy and
missing modalities. Since it also performs better than the other
approaches (Figure 2), we can conclude that it more accurately
reflects the input data uncertainty and is, therefore, a more
robust approach.

(Q2) How reliable are the predictions made by late fusion
methods?

Figure 4 visualizes the reliability diagrams for the different
late fusion methods when 50% of the modalities are missing.
Each plot shows the model’s confidence levels on the x-axis
against the actual accuracy achieved at each confidence level
on the y-axis. Blue bars represent the actual accuracy achieved
within each confidence interval on the test set, and the red line
indicates the gap between the confidence and the accuracy
for each bin. Ideally, in a perfectly calibrated model, the
predictions would be along the diagonal line, implying that
the model’s confidence matches its accuracy, and it is hence a
reliable model. Deviations below the diagonal indicate over-
confidence, while deviations above suggest underconfidence.
While all models exhibit some miscalibration, as indicated by
the gaps between the tops of the blue bars and the diagonal
line, they vary in their calibration quality. However, the plot for
the PC-based fusion method closely follows the diagonal with
smaller gaps, suggesting better calibration and more reliable
confidence estimates compared to the other methods.

Figures 5 and 6 visualize the distribution of test samples
belonging to different confidence intervals for the late fusion



approaches when presented with complete and missing data
respectively. In the complete data setting, the PC’s accuracy
closely follows the average confidence, indicating near-perfect
calibration, while other methods show a calibration gap. The
calibration gap widens slightly for all the approaches when
presented with missing data; however, the PC-based fusion
method still maintains the smallest gap. Figure 1 quantitatively
confirms this observation in terms of the mean calibration
error achieved by each of the approaches. The PC-based
fusion method achieves the lowest calibration error across both
complete and missing data. This suggests that the use of PCs as
tractable probabilistic models as combination functions helps
achieve reliable late multimodal fusion.

V. CONCLUSION

To summarize, this paper provided an in-depth experimental
comparison of some popular late multimodal fusion tech-
niques, focusing on their robustness and reliability in scenarios
reflective of real-world conditions. The paper specifically
examined how these methods perform with noisy data and
when confronted with missing modalities. The results revealed
that employing a tractable probabilistic generative model like
a Probabilistic Circuit (PC) as a combination function yields
robust and well-calibrated classifiers. The probabilistic seman-
tics and the inherent capability of PCs to handle missing data
through marginalization contribute to their reliability, which is
important when deploying multi-modal systems for decision-
making. Additionally, the results suggest that non-probabilistic
models, such as MLPs and weighted means, might require
additional regularization or training modifications to promote
calibration for enhanced robustness and reliability in real-
world applications.
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