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Abstract

We consider the problem of late multimodal
fusion for discriminative learning. Motivated
by noisy, multi-source domains that require
understanding the reliability of each data
source, we explore the notion of credibility
in the context of multimodal fusion. We pro-
pose a combination function that uses proba-
bilistic circuits (PCs) to combine predictive
distributions over individual modalities. We
also define a probabilistic measure to evaluate
the credibility of each modality via inference
queries over the PC. Our experimental eval-
uation demonstrates that our fusion method
can reliably infer credibility while being com-
petitive with the state-of-the-art.

1 INTRODUCTION

Decision-making in many real-world domains, such as
healthcare, requires reliable learning and reasoning
from diverse modalities of available data sources. Al-
though multimodal data offer rich representations and
multiple views of underlying phenomena (e.g., MRIs,
EHRs, and, blood tests in clinical settings), they can
present significant challenges for learning and inference
due to the heterogeneity of the data from these diverse
views. Additionally, raw data from different sources is
often noisy, incomplete, and inconsistent, thus posing
a significant obstacle to effective decision-making.

Multimodal fusion methods have emerged as a promis-
ing direction to integrate such complementary informa-
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tion from different modalities to achieve better perfor-
mance and reliability in discriminative learning tasks
(Baltrusaitis et all 2019; |Atrey et all 2010). How-
ever, a crucial aspect that often remains overlooked is
the explicit modeling of the credibility of the informa-
tion sources. In many applications, such as medical
diagnosis (Kline et al., |2022), sensor fusion (Khaleghi
et al., 2013, and financial analysis (Sawhney et al.
2020)), the quality and reliability of the information
sources vary significantly. Assuming equal credibility
for all information can lead to suboptimal or even incor-
rect conclusions. Hence, distinguishing reliable sources
from unreliable ones is vital for accurate and informed
decision-making.

Existing works on reliable multimodal fusion predom-
inantly focus on the late (or decision) fusion setting
(owing to the difficulty of modeling source-specific cred-
ibility in joint data or feature representations) and have
employed weighted average(Rogova and Nimier} 2004)),
discounting factors(Elouedi et al., [2004a)), Bayesian
networks(Wright and Laskeyl, 2006) as well as Neural
Networks(Subedar et al., [2019) to combine modality-
specific predictions. However, these approaches either
oversimplify complex dependencies by making strong
assumptions (such as linearity) or require approxima-
tions to make inference tractable (as in Bayesian and
Neural networks).

We thus focus on multimodal discriminative learn-
ing and propose a late fusion method that uses
Probabilistic Circuits (PCs)(Choi et al., 2020) to
effectively combine the predictive distributions over
individual modalities while modeling their credibility.
PCs are a class of generative models that are expres-
sive enough to model complex dependencies while re-
maining tractable for exact inference. We use PCs to
define a probabilistic measure for efficiently assessing

'These authors contributed equally.
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the credibility of each modality. Additionally, explicit
probabilistic modeling allows a principled way of deal-
ing with missing, noisy, and uncertain data. Overall,
we make the following key contributions:

1. To our knowledge, we introduce the first theo-
retically grounded multimodal fusion with strong
probabilistic semantics based on PCs

2. We present two versions of our late fusion algo-
rithm with different characteristics

3. We derive a theoretically grounded measure of
credibility and illustrate its connection to the con-
ditional entropy over unimodal predictive distri-
butions, allowing for reliable late fusion

4. Finally, we experimentally validate the efficacy
of PCs in modeling complex interactions between
modalities and faithfully estimating their credibil-

1ty.

The rest of the paper is organized as follows: we begin
with an overview of the relevant background and re-
lated work, followed by the formulation of our problem
at hand and the PC-based fusion method, including
credibility assessment. We then experimentally evalu-
ate the effectiveness of our method and finally conclude
with a summary of our findings and future directions.

2 BACKGROUND

2.1 Multimodal Fusion

Multimodal fusion methods(Baltrusaitis et al., |2019)
aim to integrate information from diverse sources and
modalities, such as images, text, and audio. They
exploit complementarity between different informa-
tion sources to improve decision-making performance.
There are three broad approaches to multimodal fusion:
early fusion, intermediate fusion, and late fusion.

Early fusion approaches fuse information from multiple
sources at the input level, typically ahead of feature
extraction. A simple way to achieve this would be to
combine raw modality features via concatenation or
pooling via operations such as average, min, max, etc.
(Baltrusaitis et al., [2019). In more complex deep learn-
ing models, early fusion is typically achieved by learning
joint feature spaces(Gadzicki et al., |2020]). Apart from
the curse of dimensionality, feature aggregation results
in the loss of information about source-specific distri-
butions(Schulte and Routley, [2014). This makes it
difficult to infer the credibility of input sources.

Intermediate fusion involves processing features ex-
tracted from each modality to create a unified, higher-
level representation(Joze et al.2020; |Zhang et al.,|2019;

Pérez-Rua et al.l |2019)). This approach offers more flex-
ibility than early fusion since it can account for the
unique characteristics of each modality to a greater
extent. This can improve representation learning, en-
abling fusion even with missing modality information
(Zhang et al., |2019). However, assessing the reliability
of individual input modalities remains challenging due
to the combined nature of the classifier’s representation.

Late fusion approaches combine information from mul-
tiple sources by independently making predictions on
each source and fusing the predictions. Combining
rules(Natarajan et al., 2005; [Manhaeve et al., 2018)
such as weighted mean(Shutova et al., 2016)) and Noisy-
OR(Tian et al.,|2020) are commonly used for late fusion.
While these rules allow explicit modeling of the impor-
tance of each source, they assume independence of the
influence of each source on the target(Heckerman and
Breese, [1994). Late fusion in deep learning models
is implemented via additional feedforward layers (Si;
monyan and Zissermanl, 2014; 'Wu et al., [2016). This
allows them to model complex interactions between the
sources. However, this also makes it difficult to model
the credibility of each source since neural network layers
are opaque.

2.2 Credibility

Combining information from multiple, heterogeneous
sources requires information fusion systems to ac-
count for the credibility of each modality’s contribu-
tion(De Villiers et al., |2018). Credibility, as distinct
from reliability, focuses on the information’s truthful-
ness, while reliability relates to the source’s consis-
tency(Blasch et all|2013). While human experts might
estimate their information’s credibility (self-confidence),
automated sources require external evaluation(Blasch
et al., [2014).

We follow prior works that approach the problem of ac-
counting for source reliability in multimodal fusion from
the perspective of the credibility of the information pro-
vided by the source. These works perform multimodal
fusion by explicitly modeling source-specific reliabil-
ity. These reliability models are either defined using
domain knowledge (Nimierl 1998} [Fabre et al.l |2001))
or are learned from training data(Rogova and Kasturi,
2001; |[Elouedi et al.| 2004bj; [Benediktsson et al., [1990]).

2.3 Probabilistic Circuits (PCs)

Probabilistic circuits (PCs, |Choi et al| (2020)) are
a class of generative models that use computational
graphs to represent joint probability distributions over
a set of random variables (say X). These graphs consist
of three node types: Sum nodes representing a weighted
sum (i.e., mixture) of the distributions represented by
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their child nodes, Product nodes representing a product
(i.e., factorization) of the distributions represented by
their child nodes, and Leaf nodes representing simple
tractable distributions, such as categorical or Gaussian
distributions. Formally, a PC is defined as the tuple
(G,0) where the rooted Directed Acyclic Graph G
represents the computational graph structure and 6 is
the set of learnable parameters. The output of the root
of G gives the joint distribution modeled by the PC,

ZcGCh(n) wePe(X = x) n € Sum
Hcech(n) PC(XSC(C) = Xsc(c)) n € Prod.

Y (X =x) n € Leaf

P,(X=x)=

where ch(n) gives the children of node n, sc(n) gives
the scope of node n and v, is the probability density
(or mass) function associated with the leaf node n.

The key advantage of PCs is that they admit tractable
and often linear time inference for a variety of prob-
abilistic queries under mild assumptions about the
structure of G. In this work, we consider a subclass of
PCs that are smooth and decomposable (typically called
sum-product networks (Poon and Domingos, 2011)).
A PC satisfies smoothness if the scope of each sum
node is identical to the scope of each of its children.
It satisfies decomposability if, for each product node,
all the children have disjoint scopes. Smoothness and
decomposability allow us to infer marginal and condi-
tional distributions from the PC tractably. However,
imposing such structural constraints often limits their
expressivity compared to unconstrained neural models.

The structure of PCs can be learned recursively via
greedy heuristics (Gens and Pedro, 2013} Rooshenas
and Lowd, 2014} Dang et al., [2020), or by latent-space
decomposition (Adel et al.l |[2015). However, structure
learning can be costly for large-scale data, and recent
approaches rely on random and tensorized structures
that resemble deep neural models (Mauro et al.l 2017;
Peharz et al., [2020alb; [Sidheekh et al., [2023). These
models have been shown to be highly expressive and
capable of modeling complex distributions while retain-
ing tractability for exact probabilistic inference. We
refer the reader to(Sidheekh and Natarajan, [2024) for
a detailed review.

3 MULTIMODAL FUSION via PCs

We begin by formalizing the late multimodal fusion
setting for discriminative learning that we focus on in
this work. Given a dataset in which features predictive
of a target concept are obtained from multiple different
modalities, the late fusion setting involves training an
expert over each modality to estimate the unimodal pre-

dictive distribution over the target and then combining
them using a fusion function (probabilistic combination
function in our case) to obtain the final output.

More formally,

Given: A dataset D = {(x},x5...x4,,y")}Y, with
N data points, each with information from M different
modalities, i.e. each xé € R% where d; denotes the
feature dimension corresponding to modality j for the
it" example, and 3’ is its target.

To Do: Learn a discriminative model M param-
eterized by {6,¢ = {¢;}{,} that approximates the
multimodal predictive distribution over Y[[] as

P(Y|X1, e 7)(]\/[) =~ M@,dz(Xla . 7)(]\/[)
= M(’(M¢1 (Xl)v s aM¢M(X1\/f))

where My is the fusion function, and Mg, (or M;) is
the unimodal predictor corresponding to modality <.

Real-world applications often involve noisy data, which
can affect the reliability of different modalities. Al-
though multiple modalities provide complementary in-
sights into the target Y, noise can introduce conflicting
information (e.g., predictions using only an MRI scan
may contradict that looking only at a blood test). An
ideal fusion function (My) must not only combine the
information from each modality effectively but also as-
sess the credibility of each modality-specific prediction.
Thus, as a key contribution, we develop a principled
notion of credibility by taking a probabilistic view of the
late multimodal fusion setting.

Let us denote by Fy. the true predictive distribution
over target Y given modality j, i.e Fy, = P(Y|X}).
We consider the joint distribution over the unimodal
predictors and the target Y and define credibility as
the relative amount of information contributed by a
modality to the multimodal predictive distribution over
the target Y, as follows:

Definition 1. The credibility of a modality j in
predicting the target Y is defined as the divergence
between the conditional distributions over Y given all
unimodal predictive distributions {F, }; including
and excluding Fy.. i.e.

Ci = 8(P(Y [ {Fo. }ilo) I P(Y [ {Fs. 1y \ {Fe,}))

where 0 is a divergence measure. We use KL-Divergence
for the J in our theoretical analysis and experiments. It
follows that C; > 0 Vj, but can be unbounded. Thus, to
facilitate easy comparison across modalities, we define
the relative credibility score C as

5 Cj
ijzjcj.

'We use uppercase to denote random variables and low-
ercase to denote their corresponding values.
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Figure 1: Model Diagram for our proposed fusion method. Each input modality X; is processed by a unimodal
predictor My, to get the corresponding predictive distribution p; over the target Y. A probabilistic circuit 0 is
used to model the joint distribution over the unimodal predictive distributions and Y, and the final prediction is
obtained by running an inference routine over it, governed by the form of fusion function employed (My).

Note that 0 < éj < 1Vj and Zj C} =1, and is therefore
a normalized and probabilistic measure for assessing
the credibility of modality j.

We now outline more formally how the defined notion
of credibility is related to the uncertainty over the
unimodal predictive distributions. A well-established
method for quantifying the uncertainty and information
content within a random variable is through the concept
of entropy. The following theorem establishes a direct
connection between the credibility of a modality and
the entropy of its predictive distribution.

Theorem 1. The expected credibility (E[C’]) of a
modality j in predicting the target variable Y equals
the reduction in entropy (H) over the joint predictive
distribution due to the inclusion of modality j.

E[C7] = H(Y|{Fo, }iZi \ {Fs,}) —H(Y { Fy, }i1)

Proof. We provide a short sketch of the proof and
defer the detailed version to the supplementary. For
ease, let us use the notation F = {Fy, }, and F~7 =
{Fo, 122\ {Fs,}. The credibility C7 is defined as the
KL divergence between the predictive distributions
P(Y|F) and P(Y|F~7), which can be written as:

P(y|F)
P(y[F~7)

= Z P(y|F)log P(y|F) — > P(y|F)log P(y[F )

Z P(y|F)log ———~

Now, taking the expectation with respect to the joint

distribution P(F) over F, we get:

E[C] = /FP

- /F P(F) S P(y[F) log P(y|F~7)dF

F) Y P(y|F)log P(y|F)dF

The first term reduces to the expected conditional
entropy of Y given the full set of unimodal predic-
tive distributions F and the second term simplifies
by integrating over Fy. and results in the conditional
entropy of Y given the full set excluding j, giving
E[C/] = H(Y|F~7) — H(Y|F) O

The expected credibility score of a modality thus quan-
tifies the reduction in uncertainty about the target
variable that results from incorporating modality j.
If modality j becomes corrupted or noisy, its inclu-
sion would increase the overall uncertainty (hence the
entropy H(Y [{Fy,}M,) increases), leading to a corre-
sponding decrease in its credibility. Thus, the proposed
measure of credibility is theoretically grounded and
reflects the reliability of each modality. This is particu-
larly valuable in high-stakes domains such as healthcare,
where the consequences of decision-making are signif-
icant. In such scenarios, credibility assessments can
inform the degree of reliance on specific expert systems
or allow for the exclusion of unreliable modalities.

3.1 PCs as combination functions

We now present the details of late fusion models M
capable of incorporating the above-defined notion of
credibility. It is clear that estimating credibility re-
quires access to a generative model that estimates the
joint distribution over Y and the unimodal predictors
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{Fo, Jl‘il Additionally, the generative model should
support efficient and exact evaluation of both joint and
conditional probability densities. Probabilistic Circuits
(PCs) are one such class of generative models capable
of representing complex distributions while supporting
tractable and linear-time inference of conditional and
marginal distributions.

Thus, we define the fusion function using a PC (pa-
rameterized by 0) that models the joint distribution of
the unimodal predictors and the target Y. Specifically,
given unimodal experts {p; = My, (X;)}1L,, typically
parameterized as deep neural networks the PC models
the distribution Py(Y, p1,-..,pa). We use categorical
and Dirichlet leaf distributions to represent the target
and the unimodal predictive distributions respectively.

The PC can be used to define the fusion function My
in different ways. One straightforward way would be
to use exact conditional density evaluation as

My(p1,P2,---,Pm) = Po(Y|P1,P2;- -, Pm)

We will refer to this as the Direct-PC (DPC) com-
bination function. It can explicitly model complex
correlations between the influence of each source on
the target while still being able to reason about their
credibility. The resulting late fusion method allows
both predictive inference and credibility assessment as

elaborated below.

Given a multimodal example, (x1,...,X5), we can

perform predictive inference over target Y as follows:
1. Compute p; = My, (x;) for each modality j by

evaluating the unimodal predictors.

2. Infer the multimodal predictive distribution over

Y given the unimodal distributions p1,...,pas by
performing conditional inference:
Po(Y,p1,.ee)
Py(Y | p1,....pm) = 1939((;1’717__7;%)
The credibility of a modality ;7 can then
be estimated wusing the PC 6 as C]Q =
S(Ly(Yp1,--- )| Po(Y[P1,- - Pj—1,Pj41---PM))

An alternative to the Direct-PC combination function,
that explicitly utilizes the credibility scores would be
to define the final predictive distribution as a convex
sum of credibility-weighted unimodal predictive distri-
butions. i.e:

Mo (p1, . .-

M co
\PM) = Z (W) P;

j=1 i=1

We refer to this combination function as the
Credibility-Weighted Mean (CWM). This ap-
proach allows us to weigh the predictive distributions

Algorithm 1: Credibility Aware Late Fusion -
Learning

Multimodal Dataset

D= {( ]7y )j 1}1 1

Unimodal Predictors { Mg, },
Probabilistic Circuit 6,

Loss function [, Divergence Measure §
Learning rates 11,72, #Iteratlons tmax
output : Optimal parameters: 6, {(;S]

input

initialize: 0 = 0, {(bj = ¢; }j=17t =1
while t S tmaz dO
{(x5, 9"} 2 ~D > Sample a mini-batch

For each modality j and data point ¢

> Qompute unimodal predictive distributions
Pj

P « M (x])

> Obtaln Credlblhty scores

CZ (P, (Y|{pk}k DIIP; (Y{pi ety \pj))

C;‘ A Cj/(zj 1 C_;)

> Compute the final predictive distribution

p <~ Z] 1 jpj if CWM else P; (Y|{pk}k 1)
> Compute the empirical loss

Lj % Zf;l l(p§-7yi)
B i g M
L« %21':11(1) 2Y°) +Zj:1L]
> Update the unimodal predictors and PC
{07111 < {51711 — 771V{¢”j};_»ilL
00— VL +mV5 31, Paly', {pi}IL))
t=t+1
end

return 0, {qgj JM_I

according to the trustworthiness of the source, and
is useful in ensuring that the final prediction reflects
the most reliable and pertinent information available.
Figure [I] illustrates the overall architecture of our
credibility-aware late-fusion approach.

Since PCs are differentiable computational graphs, they
can be easily integrated with neural unimodal pre-
dictors and learned in an end-to-end manner using
backpropagation and gradient descent. We optimize
the unimodal predictors to minimize the classification
loss over both the unimodal predictions as well as
the joint multimodal prediction. Further, we optimize
the PC parameters to maximize the joint likelihood
Py(Y,p1,--.,pum) as well as the classification loss over
the joint multimodal prediction. Algorithm [I] summa-
rizes the overall training methodology for our proposed
credibility-aware late multimodal fusion using PCs.

The adoption of PCs in our approach is primarily mo-
tivated by their tractability for probabilistic
inference, which is instrumental in computing
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Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 7243 £0.15 7220£0.31 71.97+0.18 71.93+0.23 96.29+0.07
Weighted Mean 66.00 £ 1.03 65.45£1.28 65.48 £1.12 65.23 £ 0.98 95.25 £0.05
Noisy-OR 68.62+0.17 68.06+0.46  68.08 +0.18 67.76 £0.21 94.50 £ 0.16
TMC 69.95 £0.11 69.70 £0.21 69.45 £ 0.15 69.18 £0.14 94.99 £0.11
Credibility-Weighted Mean (Ours) 70.41 +0.15 70.32+0.31 69.46 £0.27  68.09+0.21 94.82 £0.16
Direct-PC (Ours) 72.18 £ 0.43 71.70 £ 0.35 71.76 £ 0.40 71.63 £ 0.36 96.48 £ 0.07

Table 1: Mean test performance on the AV-MNIST dataset, + standard deviation across 3 trials.
Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 89.66 £ 1.39 90.38 £ 1.32 89.66 + 1.39 89.56 + 1.38 99.47 +£0.27
Weighted Mean 91.33 £2.25 91.97 £ 1.73 91.33 £2.25 91.38 £2.12 99.39 £0.33
Noisy-OR. 90.83 £ 2.63 91.39 £ 2.39 90.83 £+ 2.63 90.86 + 2.56 99.41 £0.28
TMC 91.50 £ 3.24 92.14 £ 3.03 91.50 £ 3.24 91.47 £+ 3.12 99.45 £0.29
Credibility-Weighted Mean (Ours) 92.49+1.41 94.03+1.57 9250+1.42 92.49+1.02 99.42+0.29
Direct-PC (Ours) 91.67 £ 1.02 9242 £ 1.15 91.67 £1.02 91.58 £ 0.94 99.28 £ 0.40

Table 2: Mean test performance on the CUB dataset, &+ standard deviation across 3 trials.

the probabilistic measures essential for assessing
the credibility of each modality. This tractability
contrasts with more complex combination functions,
such as neural networks, which do not inherently sup-
port the derivation of credibility measures despite their
potential for higher expressiveness and the ability to
learn more intricate functions. PCs on the other hand
offer a balance between expressiveness and tractability.
Moreover, PCs can naturally accommodate and adjust
to the absence of data from one or more modalities
through marginalization, preserving the integrity of the
inference process without requiring imputation or other
preprocessing steps. This also enhances the robustness
of the fusion method, ensuring reliable performance
even when faced with incomplete data.

4 EMPIRICAL EVALUATION

Our key hypothesis is that PC-based combination func-
tions can help bridge the gap between capturing com-
plex dependencies between modalities while allowing
tractable credibility inference. The focus of our work
is mot necessarily to surpass all existing methods but to
demonstrate that PCs can offer comparable performance
while introducing a new capability: credibility assess-
ment. This allows our method to be more interpretable
and robust to noise and missing data, aligning with
the goals of reliable machine learning as emphasized in
(Rudin et al., 2024). Concretely, we aim to answer the
following research questions empirically:

(Q1) Can a PC-based combining rule efficiently cap-
ture intricate dependencies between modalities
to achieve performance at par with or better
than existing methods?

(Q2) Can the tractability of PCs be used to reliably
infer credibility scores for each source modality?

(Q3) Is the proposed credibility-aware fusion robust
to the presence of noise?

Datasets We used four multimodal, multi-class clas-
sification datasets for our experiments: Caltech UCSD
Birds (CUB), NYU Depth (NYUD), SUN RGB-D, and
AV-MNIST. We defer the details of the data sets and
the preprocessing to the appendix.

Methods We compared our proposed methods with
the following 4 fundamental late-fusion approaches

1. Weighted Mean combination function that defines
the multimodal predictive distribution as:

P(Y|X1,Xg,...,Xp) = M w, P(Y|X,)

where w; are learnable weights such that 0 < w; <1
and > ;" w; = 1. The constraints on the weights
ensure that the output is a valid distribution.

2. Noisy-Or combination function that defines the
multimodal predictive distribution as:

P(Y|X1,Xa,..., Xp) =1 =[], (1 - P(Y[X)))

3. Multi Layer Perceptron (MLP) combination func-
tion that maps the vector of unimodal predictions
[P(Y|X;)]M, to the multimodal predictive distribu-
tion P(Y|X1,Xa,...,X ) using a feedforward neural
network having 2 hidden layers with 64 neurons.

4. TMC (Han et al.,[2021)) that uses Dempster’s combi-
nation function which combines evidence from different
sources by fusing belief masses and uncertainty masses
which are obtained using an evidence-theory frame-
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Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 63.55£0.23  64.65+2.24  49.324+0.95 52.35+0.68  86.01 £0.31
Weighted Mean (WM) 64.06 +4.30 64.70£1.38  57.24+3.96 59.17+£3.22  90.994+0.78
Noisy-OR 66.71 £ 1.42 68.85+£1.38  59.06+1.21 61.71 +1.31 91.23 +£0.31
TMC 66.97 £ 0.26 68.88+1.98 56.89+1.09 59.94 £ 0.42 91.47£0.39
Credibility-Weighted Mean (Ours) 68.50+0.72 67.25 + 1.11 60.17+0.85 62.03+0.91 91.52+041
Direct-PC (Ours) 57.64 £ 2.01 48.80 £1.12 49.84 +1.46 47.96 £0.79 79.70 £ 0.62

Table 3: Mean test performance on the NYUD dataset, + standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 54.55+1.04  46.40+0.15 4559 £1.03 43.78+0.87  87.19+0.38
Weighted Mean 51.80 + 2.29 45.72 £1.98 42.94 £0.73 41.59 £0.31 90.21 £0.78
Noisy-OR 54.30 £ 1.55  46.76 £1.34  44.26 £ 1.11 43.60 £0.95  90.57 £0.40
TMC 50.92 + 1.66 45.21 £2.25 42.94 £0.57 40.84 £0.76 89.84 £ 0.32
Credibility-Weighted Mean (Ours) 57.97 +1.05 48.88+0.70 46.04+0.67 45.71+0.71 91.25+0.35
Direct-PC (Ours) 53.46 + 1.31 41.97+£0.68  4260+0.83 40.73+0.76  84.34 £0.53

Table 4: Mean test performance on the SUNRGBD dataset, &+ standard deviation across 3 trials.

work (Sensoy et all|2018). It ensures high confidence
in the final prediction when input modalities are less
uncertain, and lowers confidence when modalities are
highly uncertain. In cases of conflicting beliefs, only the
shared, confident parts are fused, making the prediction
dependent on the most reliable modalities.

More recent methods have introduced regularization
schemes and specialized training algorithms to better
handle modality conflicts and improve fusion perfor-
mance (Liu et al. [2022; Xu et all [2024). However,
these schemes can be applied to all the core baselines
we have considered, as they extend rather than replace
the fundamental fusion mechanisms. We thus do not
compare against these methods here, and we leave the
integration of such advanced training schemes aimed
at enhancing performance for future work.

Setup For each of the fusion methods considered,
we used the same backbone architecture to obtain the
unimodal predictions. We implemented the PC-based
combination functions using Einsum Networks(Peharz
et al., [2020a). We trained all models end-to-end using
backpropagation to minimize the cross-entropy loss
between the targets and predictions. We used an Adam
optimizer with a learning rate of 0.001 and a batch size
of 128. We defer additional implementation details to
the supplementary, and our code is publicly availableEl

(Q1: Performance) Tables and {4 sum-
marize the test-set performance of the baseline meth-
ods and our PC-based combination functions on the
AV-MNIST, CUB, NYUD, and SUN RGB-D datasets,

’https://github.com/Pranuthi23/Credibility_
MultimodalData

—4=0.0 A=04 A=08
—_— =02 A=06 =—— A=10
Image Modality Audio Modality
oo " ¥_~
041
5, 061 //—_’
2
B 0.40
o
1=
T - k
0.58 /_/—"_"‘_’_. 038
5 10 15 20 5 10 15 20
Epoch Epoch
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obtained using a PC for the two modalities of the
AV-MNIST dataset across training epochs. Varying
degrees of noise (controlled by A) are introduced into
the audio modality.

respectively. On the large AV-MNIST data set, we ob-
serve that Direct-PC not only outperforms simple
probabilistic baselines such as Weighted Mean,
Noisy-Or, and TMC on all performance metrics
but also achieves performance similar to that of
an MLP-based fusion method. On smaller datasets
(CUB, NYUD, and SUN RGB-D), we observed that
complex models like MLP tend to overfit, impacting the
test performance, while simpler combination functions
like weighted mean and TMC achieved relatively better
performance. On these data sets, the Credibility-
Weighted Mean combination function achieves
better performance than other models on aver-
age. Overall, the results suggest that the PC-based
methods are expressive enough to capture intricate de-
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Figure 3: Mean Test Relative Credibility out-

putted by a PC for the two modalities of the AV-MNIST
dataset across varying degrees of noise (controlled by
A) introduced into each modality.

pendencies between unimodal predictive distributions
and achieve performance at par and at times even
better than more complex fusion approaches.

(Q2: Credibility Evaluation) To evaluate whether
our PC-based late fusion method can reliably compute
the credibility of each modality, we constructed noisy
versions of the AV-MNIST dataset by introducing vary-
ing degrees of noise into one of the modalities (say i),
keeping the others fixed. Since the unimodal predictors
are identical for each compared method, we introduce
noise directly into their predictive distributions.

More specifically, we defined

P(Y|X;) = AP(Y|X;) + (1= \)N

where N ~ Dir(«) is a noisy probability vector sampled
from a Dirichlet distribution with parameters «, and
0 < X <1. P(Y|X;) is thus a convex combination of
two probability distributions and is therefore a valid
distribution. A controls the amount of information
retained in P from the unimodal predictive distribution.
Note that as A — 0, P(Y|X;) — N, and thus has less
predictive information about modality i. Thus, the
credibility score should ideally decrease for modality 4
and increase for the other modalities.

Figure [2| shows how the mean relative credibility out-
putted by the PC over the validation set varies as it
is trained over the noisy unimodal distributions with
noise introduced into the audio modality, for varying
values of A. As expected, we can see that the credibility
of the audio modality decreases as training progresses,
while that of the image modality increases. Further,
we can also observe that the decrease in credibility
increases as A — 0. To demonstrate this correlation
more evidently, we plot the Mean Relative Credibility
outputted by the trained PC for each modality on the
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Figure 4: Robustness to Noise. Mean test perfor-
mance of late fusion methods across varying degrees of
noise.

test set, for the two settings where noise is introduced
into one of image/audio modalities in Figure[3] We can
clearly see that in both settings, the credibility score
of the noisy modality decreases as A\ — 0, while that
of the non-noisy modality increases. Thus, the credi-
bility score outputted by the PC is a reliable measure
that is reflective of the information contributed by each
modality to the final predictive distribution.

By averaging the credibility of each modality over all
data points, we have so far looked at a global measure.
However, the credibility of each modality may differ
locally for individual data points, which can also be
evaluated efficiently using the PC. For instance, the
image modality in AV-MNIST seems to have higher
global credibility than audio (see A = 1) on average
but the credibilities for each data point can vary.

(Q3: Robustness to noise) To establish the ro-
bustness of our approach to noise, we used the realistic
CUB data set and constructed a noisy setup similar
to the one described previously. Figure [] illustrates
the decline in test performance for the different fusion
methods over the CUB dataset when varying degrees
of noise A are introduced in one of the unimodal pre-
dictive distributions. We can observe that our method
(CWM), which performed best on the CUB dataset,
also exhibits the smallest decline in both F1 score and
AUROC, validating the robustness of our approach.

5 CONCLUSION

We considered the problem of late multimodal fusion
in the noisy discriminative learning setting. We intro-
duced a theoretically grounded measure of credibility
and proposed probabilistic circuit (PC) based combi-
nation functions capable of modeling complex interac-
tions, handling missing modalities, and making reliable,
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credibility-aware predictions. Our experimental results
demonstrated that our methods are competitive with
leading approaches, while offering a principled frame-
work for evaluating the credibility of modalities. Our
framework can also be easily adapted to other parallel
paradigms like ensemble learning, multi-view learning,
and federated learning, that involve learning from mul-
tiple sources, to enhance their reliability. One of the
inherent limitations with the current setup is that late
fusion can be less expressive than intermediate or early
fusion. One potential solution to achieve intermediate
fusion while supporting credibility evaluations could be
introducing an additional flow of information from the
intermediate features to the fusion function using con-
ditional PCs. Further exploration into these directions,
scaling the approach to domains with more modalities,
and extending the framework to allow subgroup-specific
credibilities will be a focus for future research.
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SUPPLEMENTARY MATERIAL

In this supplementary material, we present additional implementation details, complete proofs, and extended
experimental results that could not be included in the main paper due to space limitations.

Implementation Details

Datasets. We first describe the datasets used and the data preprocessing pipelines employed in depth. The CUB
(Wah et al., 2011) dataset comprises 11,788 images of birds, each annotated with attribute descriptions across
200 bird categories. Following (Han et alJ, 2021)), we used a subset of the original dataset consisting of the first 10
bird categories and 336 train images, 144 validation, and 120 test images for our experiments. We use deep visual
features obtained from using GoogleNet, and text features extracted using doc2vec as the two modalities.

The NYUD (Silberman et al., |2012) is a widely used RGB-D scene recognition benchmark, containing RGB
and Depth image pairs. Following previous work by (Zhang et all [2023)), we use a reorganized dataset with
1,863 image pairs (795 train, 414 validation, and 654 test) corresponding to 10 classes (9 usual scenes and one
"others” category). The SUNRGBD (Song et al., [2015) is a relatively larger scene classification dataset with
10,335 RGB-depth image pairs. Following (Zhang et al., |2023), we use a subset of the original dataset which
contains the 19 major scene categories and 4,845 train and 4,659 test examples. We further divided these 4845
train examples into 3,876 train and 969 validation instances. In both the NYUD and SUNRGBD datasets, we
utilized resnet18 (He et al., [2016) pre-trained on ImageNet as an encoder for each modality.

AV-MNIST is a benchmark dataset designed for multimodal fusion. With 55,000 training, 5,000 validation, and
10,000 testing examples, it has two modalities: images of dimension 28 x 28 depicting digits from 0 to 9, and
their corresponding audio represented as spectrograms of dimension 112 x 112. Following (Vielzeuf et al., 2018)),
we used deep neural models with the LeNet architecture to encode the input data and make predictions for each
modality. Specifically, we processed the image input through a 4-layer convolutional neural network with filter
sizes [5, 3, 3, 3]. Similarly, the audio input was encoded using a 6-layer convolutional neural network with filter
sizes [5, 3, 3, 3, 3, 3]. For all the datasets, the encodings obtained were processed through a feedforward neural
network to obtain the unimodal predictions.

We also present results obtained on the Handwritten dataset (Duinl [1998]) in this supplementary. It consists of
2,000 instances of handwritten numerals from 0 to 9 represented in terms of 6 feature sets. Following (Han et al.|
2021)), we divided these 2,000 instances into 1,120 train, 480 validation, and 400 test examples.

Models. We employed the same unimodal feature extraction and prediction backbone architecture across all the
combination functions evaluated for each dataset in order to ensure a fair comparison. We used einsum networks
(Peharz et al., [2020a)), which offer deep tensorized implementation of probabilistic circuits in PyTorch, that can
be easily trained on GPUs for the Credibility-Weighted-Mean and Direct-PC combination functions. The exact
hyperparameters and configs used for all the experiments can be found here EL

The approaches TMC (Han et al., 2021) and RCML (Xu et all 2024)) operate at the evidence level, unlike the
other combination functions that combine at the prediction level. Hence, we evaluate their performance using
their respective frameworks. For the remaining methods, we use the standard cross-entropy loss. QMEF typically
incorporates a specialized training procedure that leverages historical training trajectories, and hence trained on
this regularized loss and evaluated on cross-entropy loss. It is important to note that our methods can be extended
to incorporate such specialized training procedures, which could potentially enhance performance. However, such
extensions are left for future investigation.

Theorems and Proofs

Theorem 2 (Expected Credibility as Entropy Reduction). The expected credibility E[C?] of a modality j in
predicting the target Y equals the reduction in entropy (H) over the joint predictive distribution due to the inclusion
of modality j i.e. ‘

E[C7) = H(Y [{Fp, 20 \ {Fs,}) — HY [{Fo, }iZ1)

Proof. For ease, let us use the notation F = {Fy, }M, and F~7 = {F,, }L, \ {F,,}. We have from the definition

®https://github.com/Pranuthi23/Credibility_MultimodalData
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of credibility, using KL divergence as the divergence measure,

¢! = KL(PWDIP(YIE) = 3 PP og (<|F)j > POIF) ot POIF) = 3 PUIF) g PP )

Taking expectations w.r.t P(F), we get
E[C7] = Z/ P(y|F)log P(y|F)dF — Z/ P(y|F)log P(y|F~7)dF
-y / P(5.F)log PIF)AE = 3 | P(y.F)log P(yIF~)aF
Y y

—HYF) - /F log P(y|F ) /F P(y, F~, Fy,)dF,, dF—
y - bj

H(Y|F) — Z Py,F 7Y log P(y|F~7)dF

—H(Y[F ) - <Y|F>

Additional Results

To show that our PC-based combination function can capture intricate dependencies between modalities to achieve
performance at par with existing methods, we also include a comparison of the performance of our methods with
2 additional recent late-fusion approaches described below.

- RCML (Xu et al [2024]) uses a conflictive opinion aggregation approach based on the framework presented
in (Sensoy et all 2018]). It modifies the late fusion setup by replacing each unimodal classifier’s final softmax
activation with the softplus activation function to obtain evidence. It fuses these unimodal evidences using the
average function.

- QMF (Zhang et al., |2023) uses a dynamic weighing mechanism for the combination function. This method
captures uncertainty across multiple modalities using an energy score and performs fusion by weighing each
modality based on this uncertainty.

As discussed in the main paper, these recent late-fusion methods incorporate reqularization strategies and specialized
training algorithms to address modality conflicts and enhance fusion performance. While such techniques could
be integrated into our fusion framework to further improve results, we reserve this exploration for future work.
Below, we focus on comparing our base models directly with these advanced methods to demonstrate that even
without additional enhancements, our base approach achieves performance similar to state-of-the-art techniques.

Tables @ and |§| present the performance of the compared models (including QMF and RCML) on the
AV-MNIST, CUB, NYUD, SUNRGBD, and Handwritten datasets respectively. On the larger AV-MNIST dataset,
Direct-PC demonstrates superior performance than other simple probabilistic baselines like Weighted Mean,
TMC, RCML, and Noisy-OR. We observe that while QMF marginally outperforms Direct-PC on AVMNIST,
the difference in performance is statistically non-significant. However, on smaller datasets, complex models
tend to overfit, resulting in Direct-PC underperforming compared to simpler models. In these scenarios, our
Credibility-Weighted Mean method proves effective, either surpassing the performance of all the other methods
(like in CUB and SUNRGBD) or achieving similar to that of the best-performing approach.

Experimental Setup

For the experiments, we utilized Intel Xeon Platinum 8167M CPU with 24 cores along with NVIDIA Tesla V100
GPUs, each with 16GB memory. Our setup included a total of 2 GPUs, enabling us to distribute the workload
efficiently across CUDA cores. However, our experimental results can be reproduced using a single GPU instance
of the V100 with the aforementioned configuration.
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Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 7243 £0.15 7220£0.31 71.97+0.18 71.93+0.23 96.29+0.07
Weighted Mean 66.00 £ 1.03 65.45£1.28 65.48 £1.12 65.23 £ 0.98 95.25 £0.05
Noisy-OR 68.62+0.17 68.06+0.46  68.08 +0.18 67.76 £0.21 94.50 £ 0.16
T™C 69.95 £0.11 69.70 £0.21 69.45 £ 0.15 69.18 £0.14 94.99 £0.11
RCML 67.56 £0.29  67.15+0.67  67.04+0.32 66.93+0.44  91.824+0.15
QMF 72.38 £0.33 72.04+£0.37  71.9440.32 71.87+£0.40  96.56 +0.09
Credibility-Weighted Mean (Ours) 70.41 +0.15 70.32+0.31 69.46 £0.27  68.09+0.21 94.82 £ 0.16
Direct-PC (Ours) 72.18 £ 0.43 71.70 £ 0.35 71.76 £0.40 71.63 £ 0.36 96.48 £ 0.07

Table 5: Mean test performance on the AV-MNIST dataset, + standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 89.66 + 1.39 90.38 +1.32 89.66 4+ 1.39 89.56 4+ 1.38 99.47 + 0.27
Weighted Mean 91.33 £2.25 91.97 £ 1.73 91.33 £2.25 91.38 £2.12 99.39 £0.33
Noisy-OR. 90.83 £ 2.63 91.39 £ 2.39 90.83 £+ 2.63 90.86 + 2.56 99.41 £0.28
TMC 91.50 £ 3.24 92.14 £ 3.03 91.50 £ 3.24 91.47 + 3.12 99.45 £0.29
RCML 89.33 £5.01 90.04 £+ 4.87 89.33 £5.01 89.08 + 5.22 99.34 £0.32
QMF 90.50 £ 2.40 90.99 + 2.42 90.50 £+ 2.40 90.35 £+ 2.40 99.53 £ 0.40
Credibility-Weighted Mean (Ours) 92.49+1.41 94.03+1.57 92.50+1.42 92.49+1.02 99.42+0.29
Direct-PC (Ours) 91.67 £ 1.02 9242 £ 1.15 91.67 £1.02 91.58 £ 0.94 99.28 £ 0.40

Table 6: Mean test performance on the CUB dataset, £ standard deviation across 5 trials.

A total of 8 workers were used to load, preprocess, and train the model for each of the datasets. The compute
time for the experiment when run on a single GPU instance was approximately an hour for each configuration of
the combination functions for the NYUD and AV-MNIST datasets whereas it took only 6 minutes for CUB and
Handwritten datasets due to their compact size. SUN-RGBD, on the other hand, took about 5 hours to run each
configuration as it’s huge in size, compared to other datasets. Memory utilization was closely monitored, and we
observed an approximate average usage of 1, 1, 9, 2, and 9 GB for CUB, Handwritten, NYUD, AVMNIST, and

SUNRGBD respectively.



Sidheekh, Tenali, Mathur, Blasch, Kersting, Natarajan

Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 63.55 £0.23 64.65 £ 2.24 49.32 £0.95 52.35 £ 0.68 86.01 £0.31
Weighted Mean (WM) 64.06 + 4.30 64.70 £ 1.38 57.2+3.96 59.17 4+ 3.22 90.99 + 0.78
Noisy-OR. 66.71 £ 1.42 68.85 £ 1.38 59.06 £ 1.21 61.71 +1.31 91.23 £0.31
T™™C 66.97 + 0.26 68.88 +1.98 56.89 + 1.09 59.94 4+ 0.42 91.47 +0.39
RCML 68.64+2.34 6946 £0.59 59.844+3.41 62.48 + 2.88 90.46 £ 0.49
QMF 68.19 £ 1.99 67.39 £ 0.69 62.20+1.74 63.49+1.44 92.06+0.54
Credibility-Weighted Mean (Ours)  68.50 4= 0.72 67.25 £1.11 60.17 £ 0.85 62.03 £ 0.91 91.52 £0.41
Direct-PC (Ours) 57.64 + 2.01 48.80 £ 1.12 49.84 £+ 1.46 47.96 £0.79 79.70 + 0.62

Table 7: Mean test performance on the NYUD dataset, £+ standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 54.55+1.04  46.40+0.15  45.59£1.03 43.78+0.87  87.194+0.38
Weighted Mean 51.80 £ 2.29 45.72 £1.98 42.94 +£0.73 41.59 £0.31 90.21 £0.78
Noisy-OR 54.30 +1.55  46.76 +£1.34  44.26 £1.11 43.60 £0.95  90.57 £ 0.40
TMC 50.92 + 1.66 45.21 £ 2.25 42.94 +£0.57 40.84 £0.76 89.84 £0.32
RCML 53.44+1.02  44.514+2.00 43.15+£0.66 41.77+£0.87  80.86+0.35
QMF 57.95+ 1.38 51.30£1.17 4798+ 0.57 46.91+0.64 90.09+0.57
Credibility-Weighted Mean (Ours) 57.97 +£1.05 48.88+0.70  46.04+0.67  45.71+0.71 91.25 +0.35
Direct-PC (Ours) 53.46 £ 1.31 41.97 £ 0.68 42.60 = 0.83 40.73 £0.76 84.34 £0.53

Table 8: Mean test performance on the SUNRGBD dataset, + standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC
MLP 97.33+0.14 97.38+0.14 97.33+0.14  97.33£0.15  99.91 £ 0.00
Weighted Mean (WM) 97.33 £1.13 97.39 £1.10 97.33 £1.12 97.32£1.13 99.90 £0.01
Noisy-OR 97.17 £0.95 97.24+£090 97.17+0.95 97.17+£0.95  99.70 + 0.06
TMC 97.41 £ 1.15 97.46 £1.14 97.41 £1.15 97.40 £1.15 99.92 £0.05
RCML 96.41£1.50 96.54+1.40  96.41+1.51 96.42+1.50  99.73+0.33
QMF 98.08+1.23 98.14+1.18 98.08+1.23 98.08+1.23 99.96+0.03
Credibility-Weighted Mean (Ours)  97.25 +1.15 97.32 £1.09 97.25 £ 1.15 97.24 £1.15 98.87 £ 0.66
Direct-PC (Ours) 96.67 £ 1.52 96.72 £ 1.51 96.67 £ 1.52 96.66 £ 1.53 99.74 +£0.23

Table 9: Mean test performance on the Handwritten dataset, 4+ standard deviation across 3 trials.
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