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Abstract. Adverse drug events (ADEs) are a major concern and point
of emphasis for the medical profession, government, and society in gen-
eral. When methods extract ADEs from observational data, there is a ne-
cessity to evaluate these methods. More precisely, it is important to know
what is already known in the literature. Consequently, we employ a novel
relation extraction technique based on a recently developed probabilistic
logic learning algorithm that exploits human advice. We demonstrate on
a standard adverse drug events data base that the proposed approach can
successfully extract existing adverse drug events from limited amount of
training data and compares favorably with state-of-the-art probabilistic
logic learning methods.

1 Introduction

Adverse drug events (ADE) are one of the major causes of death in the world. For
instance, nearly 11% of hospital admissions of older adults in US are attributed
to ADEs [5]. Consequently there has been an increase in focus and application of
statistical learning algorithms for detecting ADEs from data such as Electronic
Health Records (EHRs) and clinical studies [16]. While there is a plethora of
research on detecting them from clinical data, there are not many methods that
can validate the output of these algorithms except for manually scanning through
the ADEs. In this case, the burden is on the expert to evaluate these extracted
ADEs by knowing all the ones published in the literature.

We explore the use of published medical abstracts to serve as ground truth
for evaluation and present a method for effectively extracting the ADEs from
published abstracts. To this effect, we adapt and apply a recently successful
machine learning algorithm [15] that uses a human expert (say a physician) as
more than a “mere labeler”, i.e., the human expert in our system is not restricted
to merely specify which of the drug event pairs are true ADEs. Instead, the
human expert would “teach” the system much like a human student by specifying
patterns that he/she would look for in the papers. These patterns are employed
as advice by the learning system that seamlessly integrates this advice with
training examples to learn a robust classifier.



More precisely, given a set of ADE pairs (drug-event pairs), we build upon
an NLP pipeline [12] to rank the ADE pairs based on the proof found in the
literature. Our system first searches for PubMed abstracts that are relevant to
the current set of ADE pairs. For each ADE pair, these abstracts are then parsed
through a standard NLP parser (we use Stanford NLP parser [3], [10]) and the
linguistic features such as parse trees, dependency graphs, word lemmas and n-
grams etc. are generated. These features are then used as input to a relational
classifier for learning to detect ADEs from text. The specific relational classifier
that we use for this purpose is called Relational Functional Gradient-Boosting
(RFGB) classifier [14]. The advantage of employing this classifier over standard
machine learning classifiers such as decision-trees [11], SVMs [2] and boosting [17]
is that RFGB does not assume a flat-feature vector representation for learning.
This is important in our current setting as it is unreasonable to expect the same
number of abstracts for each ADE pair. More importantly, it is not correct to
expect the same type of parse trees and dependency graphs for each article (as
each set of authors can have a different style). The presence of this diverse set
(and number) of features necessitates the use of a classifier that can leverage a
richer representation that is more natural to model the underlying data. Needless
to say, relational representations have been successful in modeling the true nature
of the data and we adapt the state-of-the-art relational learning algorithm.

While powerful, standard learning will not suffice for the challenging task of
extracting ADEs as we will show empirically. The key reason is that we do not
have sufficient number of training examples to learn a robust classifier. Also,
the number of linguistic features can be exponential in the number of examples
and hence learning a classifier in this hugely imbalanced space can possibly
yield sub-optimal results. To alleviate this imbalance and guide the learner to a
robust prediction model, we explore the use of human guidance as advice to the
algorithm. This advice could be in terms of specific patterns in text. For instance
it is natural to say something like, “if the phrase no evidence is present between
the drug and event in the sentence then it is more likely that the given ADE is
not a true ADE”. The learning algorithm can then identify the appropriate set
of features (from the dependency graph) and make the ADE pair more likely to
be a negative example. As we have shown in non-textual domains [15], this type
of advice is robust both to noisy training examples as well as for a small number
of training examples. We adapt and extend the previous work for textual data.

To summarize, we make several key contributions: first is that we develop a
robust method that can automatically learn a classifier for detecting ADEs from
text. This goes beyond current state-of-the-art methods that employ a hand-
crafted classifier such as conditional random fields (CRF) [6]. Second, we lessen
the burden on human experts by allowing them to provide some generalized ad-
vice instead of the mundane task of manually labeling a huge number of learning
examples. Also, it removes the burden of designing a specific classifier such as
CRF or a SVM for the task. Effectively, our expert is required to be a domain
expert (who understands medical texts) instead of machine learning expert who
needs to carefully design the underlying model and set the parameters. Finally,



we evaluate the learning method on a corpus of available ADEs and empirically
demonstrate the superiority of the proposed approach over the alternatives.
The rest of the paper is organized as follows: we present the background
on the learning algorithms (with advice) next. We follow this with a discussion
on how these algorithms are adapted to our specific task. We then present the
empirical evaluations before concluding by outlining areas for future research.

2 Prior Work on Learning Relational Models

We now present our prior work on relational classifiers that we build upon in
this work. We first present Relational Functional Gradient Boosting (RFGB) [14]
and its extension to handle expert knowledge [15].

2.1 RFGB

Before outlining the algorithms that we employ, we will present them in the
standard machine learning setting. Gradient ascent is the standard technique for
learning the parameters of a model and typically starts with initial parameters 6
and computes the gradient (A;) of an objective function w.r.t. 6y. The gradient
term is then added to the parameters 6y and the gradient ascent is performed for
the new parameter value 61 = 6y+A; and repeated till convergence. Friedman [4]
proposed an alternate approach where the objective function is represented using
a regression function ¥ over the examples x and the gradients are performed with
respect to ¥(x). Similar to parametric gradient descent, the final function after n
iterations of functional gradient-descent is the sum of the gradients, i.e., ¥, (z) =
Yo(z)+ A1 (z) + -+ + An(x). Each gradient term (A,,) is a regression function
over the training examples (E) and the gradients at the m*" iteration can be
represented as (z;, A, (2;)) where z; € E.

Rather than directly using (x;, An(z;)) as the gradient function (memo-
rization), functional gradient descent generalizes by fitting a regression func-
tion v, (generally regression trees) to the gradients A,,. The 1, function
uses the features of the example x to fit a regression function to A,,(x). For
example, to predict the relationship between an example drug-effect pair in a
sentence, the dependency paths and the words connecting the drug-effect pair
would be the features used to learn the regression function. The final model
Ym = o + Y1 + -+ + Y, is a sum over these regression trees. Functional-
gradient ascent is also known as functional-gradient boosting (FGB) due to this
sequential nature of learning models based on the previous iteration.

But standard FGB assumes the examples have a flat feature representation.
However, as mentioned earlier, each sentence can have structured features such as
dependency path structure and parse trees leading to different number of features
for every example in a flat representation. Relational models can handle data by
using first-order logic representation. E.g., “prep_of” dependency between words
“cause” and “MI” can be represented as prep_of(cause, MI).

FGB has been extended to relational models [14], [8], [9], [13] to simultane-
ously learn the structure and parameters of these models. Relational examples



are groundings/instantiations (e.g. drug-event(aspirin, headache)) of the predi-
cates/relations (e.g. drug-event) to be learned. The ¢ function is represented by
relational regression trees (RRT)[1] which uses the structured data as input in
the trees. A standard objective function used in RFGB is the log-likelihood and
the probability of an example is represented as a sigmoid over the v function
[14]. They showed that the functional gradient of likelihood w.r.t. ¢ is

OlogP(X = x)
(i)

which is the difference between the true distribution (I is the indicator function)
and the current predicted distribution. A sample relational regression tree for
target(X) is shown in Figure 1.

=1I(y; =1) — P(y; = 1; 24, Pa(z;)) (1)

Fig. 1. Relational regression tree for a target predicate of interest, such as target(X)
where p(X) and q(X, Y) are the features used. w; is the weight returned for target(x),
if p(x) is true and q(x, Y) is true for some value of Y. X and Y are variables and can
be instantiated with values such as “aspirin”, “headache” etc.

2.2 Relational Advice

While effective, the above method requires a large number of manually annotated
examples. This translates to requiring a human to manually annotate every men-
tion of a positive ADE pair and possibly several negatives. This is unreasonable
and limits the human expert to be a mere labeler. It would be more practical for
the human to provide some sort of advice. An example could be to “extract all
positive ADEs even at the cost of some false positives”. This is a cost-sensitive
advice and we have explored this in the context of RFGB [18]. While effective,
this advice is restricted to a trade-off between false positives and false negatives.

Human experts are capable of specifying richer advice. For instance, it is
more reasonable to specify that if the same sentence has an event word and a
drug with a word cause somewhere in their path, then it is more likely that it
is an adverse event. We have recently developed a formulation based on RFGB
that can handle such advice [15].

Our gradients contain an extra term compared to RFGB.

Alz) = (I(yi =1) = Plyi = 1;9)) + (1 — ) - [ne(:) — np(wi)]



where n; is number of advice rules that prefer the example x; to be true and
ny that prefer it to be false. Hence, the gradient consists of two parts: (I — P)
which is the gradient from the data and (n; — ny) which is the gradient with
respect to the advice.
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Fig. 2. Advice-based RFGB.

Figure 2 presents the advice-based RFGB approach. Intuitively when the ex-
ample label is preferred in more advice models than the avoided target, n:(z;) —
ng(x;) is set to be positive. This will result in pushing the gradient of these
examples in the positive direction (towards +o0c). Conversely when the exam-
ple label should be avoided in more advice models, n;(z;) — ny(x;) is set to be
negative which will result in pushing the gradient of this example in the nega-
tive direction (towards —oo). Examples where the advice does not apply or has
equally contradictory advice, ns(x;) —nys(z;) is 0. Hence, this approach can also
handle conflicting advice for the same example.

Consider the adverse drug event prediction task using the dependency paths
from sentences. A sample advice in our formalism is:

object(” cause” , event) A agent(” cause”, drug) — adverse(drug, event)

where adverse is the preferred label for this advice?.

3 Proposed Approach

Our approach aims to predict whether there is evidence in the medical literature
that a drug is known to cause a particular event. As there are very few examples
that we are provided with compared to the number of features, our system
incorporates domain knowledge that could be employed to identify text patterns
in sentences that suggest an event is caused by a given drug. As mentioned
previously, such a system can be used by other ADE predictors to evaluate

4 A is used to represent AND in logic
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Fig. 3. Our proposed approach first finds medical abstracts that contain the drug and
effect. Features are constructed by running them through the Stanford NLP parser.
This data, along with the expert advice, is input to the learning algorithm.

whether they have identified a previously known drug and event. This would
allow a knowledge-base of known ADEs that is constantly updated with the
latest medical knowledge.

Figure 3 shows the process of training a model to predict ADEs. The first step
of this process starts with searching PubMed, the standard database of medical
publications, for abstracts that contain names for both the drug as well as the
event. A sample query that we use is “Angioedema Renal Failure”. We collect
the first 50 abstracts for our deeper analysis. Previous empirical analysis [12]
showed that 50 publications were sufficient and going beyond 50 to 75 or 100
did not statistically improve the results. While PubMed contains many articles
of varying degrees of quality, we restrict the search to only articles that have
been verified by PubMed (MEDLINE). If a drug and event have more than 50
results, then only the top 50 are extracted.

The abstracts for these drug and events are then passed to the Stanford NLP
parser that generates facts (relational features) that represent the known medical
knowledge for these drug and events. The specific features that we extract are
parse trees, dependency paths, word lemmas and bag-of-word features. These are
the standard features used in NLP literature and hence we employ them as well.
The key reason for considering a relational representation is that the chances of
two parse trees and/or dependency paths to look similar is minimal. Instead of
carefully standardizing the features, relational models allow for learning using
their natural representations. To summarize, for every ADE pair, the top 50
abstracts are parsed through the NLP parser and the corresponding features are
then given as training data to the next step — the relational learning algorithm.

The learning algorithm has two sources of input: the training data and the
expert domain knowledge. The training data is generated from a database (de-
scribed in Section 4) of drug and event pairs that are either known to or known
not to be ADEs. The second source of input is the expert domain knowledge.



This knowledge should capture the terminology by which medical experts ex-
press whether or not a drug and effect are related. For instance, “drug A causes
event B” or “drug A is caused by event B” are two sample sentences that could
have been used in abstracts. These are then used as advice to express that a
drug causes a particular event. This knowledge is key to overcome the few train-
ing examples from which to learn. Note that soliciting advice is less costly than
labeling more examples. We use 10 similar statements. For the purposes of this
work, we as English speakers, served as the domain expert and wrote these rules.
These rules were then used as advice by the learning algorithm for learning a
set of relational regression trees that will serve as the model.

Once the learning phase is complete, the model can then be queried for in-
ferring unseen ADEs from published, medical literature. This will become the
test phase of our approach. Given, a new set of ADEs, the method automati-
cally searches PubMed, constructs the NLP features and queries the model. The
model in turn returns P(ade(drug, event)|evidence) i.e., it returns the posterior
probability of the drug-event pair being an ADE given the scientific evidence.
Since all the evidence is observed, performing inference requires simply query-
ing all the relational regression trees, summing up their regression values and
returning the posterior estimates.

We must mention a few salient features of the proposed system (1) As more
medical papers are published, the evidence of a drug causing an event can change
and the system can automatically update its prediction resulting in an efficient
refinement of medically known ADEs. (2) The nature of the formulation allows
for contradicting and imprecise advice from domain experts. This allows for mul-
tiple experts to provide their inputs and our algorithm can automatically learn
which of these are valid and which are not. (3) The use of richer advice enables
for potentially weighing the different medical literature as well. For instance, it
is possible to specify that “Journal X is more prestigious than Journal Y and
hence trust it more than Y”. This type of advice can also allow for specifying
that more recent findings can potentially be more correct than older ones.

In summary, we have outlined a powerful system that allows for seamless
human advice taking learning system that can automatically infer if a given
drug-event pair has evidence in the literature to be an ADE.

4 Experiments
Our experimental results focus on three key questions:

Q1: How effective is the ADE extraction from text?

Q2: Can domain experts provide useful knowledge to extract evidence about
ADEs from medical abstracts?

Q3: How effective is our method in incorporating advice into learned model?

Methods considered: We compare our method (called Adv-RFGB in the
results) to three different baseline approaches. Both approaches, MLN-Boost and
RDN-Boost, learn only from the data without considering the expert knowledge.



The third baseline that we considered is Alchemy®, the state-of-the-art structure
learning package for learning relational probabilistic models. The goal of this
comparison is to establish the value of the expert knowledge (i.e., answer Q2).
Experimental Setup: The drug and event pairs come from Observational
Medical Outcomes Partnership ¢ 2010 ground truth, a manually curated database.
To facilitate evaluation and comparison of methods and databases, OMOP es-
tablished a common data model so that disparate databases could be represented
uniformly. This included definitions for ten ADE-associated health outcomes of
interest (HOIs) and drug exposure eras for ten widely-used classes of drugs.
Since this OMOP data includes very few positive examples (10 to be precise),
we investigated other positive examples found in the literature to increase the
training set. Our final dataset that we built contains 39 positive and 1482 nega-
tive examples (i.e.,39 x 38, the cross-product of all drug-effect pairs and obtained
the ones that are not true ADE). The abstracts that we collected for the drug
and event pairs contained 5198 sentences. Note that some drug and event pairs
were not mentioned in any abstracts. In all experiments, we performed 4-fold
cross validation. We compare both area under the curve for ROC and PR curves.
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Fig. 4. Experimental results for predicting ADEs

Results: The results are presented in figure 4. The first three graphs present
the results of using only data and employing standard relational learning meth-
ods. As can be seen, our proposed method that also employs “human advice”
outperforms the three baselines that do not incorporate advice - (RDN-Boost,
MLN-Boost, and Alchemy). This highlights the high value that the expert knowl-
edge can have when learning with few training examples and thus answers Q2.
Q1 and Q3 can also be answered affirmatively in that our proposed method is
effectively learning with a high degree of accuracy to predict from the text ab-
stracts. It is also clear that the advice is effectively incorporated when compared
to merely using the data for learning and inference.

We investigated the differences between our predictions and the OMOP
ground truth to understand whether our method was truly effective. One key

5 alchemy.cs.washington.edu
5 http://omop.org/



example where our method predicted an ADE pair to be positive, but OMOP
labeled it as a negative ADE pair was: Bisphosphonate causes Acute Renal
Failure. Our method predicted it as an ADE with a high (98.5%) probability.
We attempted to validate our prediction and were able to find evidence in the
literature to support our prediction. As an example, PubMed article (PMID
11887832) contains the sentence:

Bisphosphonates have several important toxicities: acute renal failure,
worsening renal function, reduced bone mineralization, and osteomalacia.

This suggests that our method (1) is able to find some evidence to support its
prediction and (2) is capable of incorporating novel medical findings.

5 Discussion

Extracting ADEs from medical text has been an active area for recent re-
search [7], [12]. Kang et al.’s method relied on a dictionary system to identify the
drugs and effects in the sentence and a knowledge graph to semantically iden-
tify if any relationship was present between drug and effect. We allow human
advice to guide our learning algorithm as opposed to using previously defined
knowledge-bases. Natarajan et al. first use a human expert to define a full model
that can just be queried and not learned. They use the expert advice as a prior
and then refine that model according to the data. In comparison, we learn from
human advice and training data jointly to learn a more robust model in the pres-
ence of noisy evidence. Our proposed approach builds upon a recently successful
probabilistic learning algorithm that exploits domain knowledge. We adapted
an NLP pipeline that allows for this learning method to search for PubMed
abstracts, construct appropriate NLP features and learn a model by seamlessly
taking human advice. Our experimental evaluation on the standard OMOP data
set showed that this approach effectively and efficiently exploits human advice.

There are several possible directions for future work. In this work, we as-
sume ADE pairs but extending this to multiple drugs and multiple events is
not difficult and we plan to pursue this next. Also, we only consider abstracts
but considering the full text of articles remains an interesting direction. As we
have shown even with only abstracts, there is an imbalance in the number of
examples vs the number of features. This dimensional disparity can potentially
grow exponentially with full text. Extending our learning algorithms to handle
this huge dimension is another direction. Finally, understanding if it is possible
to unearth novel ADEs by “reading between lines” of text articles remains an
exciting and potentially game-changing future direction of research.
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