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Background

Motivation

Probabilistic circuits (PCs) represent joint probability
distributions using structured computational graphs;

Learning distributions using Exploit Domain Knowledge

Sparse and Noisy data as inductive bias
they can efficiently answer probability queries. P Y
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Need a principled way to integrate different types

Domain knowledge concisely encodes information knowledge into the learning of PCs

about general trends but is insufficient to fully define
distributions. e.g., monotonicity, independence.

Methodology

Given: Dataset D over variables X and multiple forms of domain knowledge K
To Do: Learn a probabilistic circuit 8 that accurately models P(X)

A unified framework for encoding knowledge: Differentiable functions of probability queries

4 Equality constraints N 4 Inequality constraints N
P(x) = P(X/), ¥(x,x') € D* s.t. similar(x,x) PX;=1|X,=1)>P(X;=1] X, =0)
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% Overall Pipeline
I Formally state the Encode the knowledge as equality Choose a differentiable Learn PC by solving a
domain knowledge & inequality constraints on measure of knowledge series of optimization
probability queries violation, e.g., MSE. problems

Solve the following sequence of optimization problems,
increasing penalty weight until violation term vanishes

Orr1 = arg;naxﬁ((Q, 9)7 D) — A\t C((Q, 9>)

Data Knowledge

* Penalty acts as knowledge-intensive regularization

* Can be computed efficiently & differentiably from PC

* Penalty from multiple forms of knowledge can be added

Empirical evaluation

PC PC+Knowledge PC +CSI +CSI+MIS
BN asia —483.3 £ 4.1 —313.2+3.9 earthquake —272.0x 2.4 —137.7 4.7 —106.1 =1.1
sachs —1097.5 £ 8.8 —861.2 + 8.7 survey —611.7+£ 7.2 —523.5 £ 4.3 —470.9 £ 6.6
survey —611.7 7.2 —476.6 + 6.6 asia —483.3 +4.1 —320.5+9.9 —284.7 + 6.4
—272.0+2.4 —121.8 = 2.1
carthquake 20 5 numom2b-b —18281.24+218.8 —15122.94+201.7 —14758.1-+60.3
UCI breast-cancer —2110.8 £ 15.6 —1271.5+14.6
diabetes —010.3+ 310 —5070.3 £ 4818 . pCg |earned by combining domain knowledge with data
thyroid —301.5 £6.1 —200.5 = 23.2 .
heart-disease  —931.7 & 15.0 —739.8 £ 7.2 outperform purely data-driven ones.
RW numom2b.a  —14573.0 £ 60.9 —7988.2 L 1.6 * PCs learned using multiple forms of knowledge outperform those

limited to one form of knowledge.
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